Lesson 3 – Solving Triangles

Goal:

- Given a right-angle triangle with 2 known measurements, you can determine the missing lengths and angles. (Can be applied to contextualized problems)
- Understands that connected triangles can be solved in unison.

New Terminology:

• "Solve the triangle"

Review: Determine the missing angles of the triangles. Use inverse sine, cosine, and tangent all at least once.

Review: What does $\arcsin(0.35)$ and $\tan^{-1}(1.2)$ represent?

Recall, we can find all the information for a triangle if we know 2 sides OR 1 side and 1 angle.

Example: Solve the following triangle:

Practice: Solve the following triangle:

Example: Find the perimeter of the following triangle:

Practice: Determine the perimeter of the following shape:

Chapter 3 Trigonometry

Discuss: A telephone pole is supported by two guide wires anchored at the ground 4 m away from the base of the pole. One of the wires connects from the top and makes an angle of elevation of 84° , the other connects somewhere in the middle of the pole and makes an angle of elevation of 63° . How far apart are the two wires on the telephone pole?

Discuss: Determine the angle formed when you connect the points (5,5), (2,1), and (7,-1) together in order.

Discuss: Determine the area of a regular pentagon with side length 8 cm.

Assigned Problems: 3.3 page 131 – 135 # 1-3, 5, 7, 9, 11-14

<u>∲</u> 15, 16

Multi-Step Trig Problems Worksheet Multi-Step Angle Worksheet

Key Ideas on page 131