Squeeze Theorem and Limits with Infinity

Goal:

- Can use squeeze theorem to determine the value of limits
- Can use the limit of $\frac{\sin x}{x}$ and $\frac{\cos x-1}{x}$ to evaluate certain limits
- Can determine the limit as $x \rightarrow \infty$ using substitution, graphs, and squeeze theorem
- Can give an interpretation of a limit being ∞

Terminology:

- Squeeze Theorem

Theorem: Let (a, b) be some interval such that $g(x) \leq f(x) \leq h(x) \forall x \in(a, b), x \neq c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L$

Then

This is the Squeeze Theorem.
Consider $f(x)=\frac{\sin x}{x}$ we need to squeeze it between two "nice functions" (that we can find the limit of easily).

$$
\cos x<\frac{\sin x}{x}<1 \text { provided } x \in(-\pi, \pi)
$$

WARNING!!

Now that we know the $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ we can use that limit to find other limits. For example, determine the following.

$$
\lim _{x \rightarrow 0} \frac{\tan 2 x}{x}
$$

Practice: Determine

a. $\lim _{x \rightarrow 0} \frac{3 x}{\sin x}$
b. $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x}$
c. $\lim _{x \rightarrow 0} \frac{x^{2}+5 x-\sin x}{x}$
d. $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}-3 x+2}$
e. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
f. $\lim _{x \rightarrow \pi} \frac{\sin x}{x-\pi}$

Unit 1: Limits and Continuity
In some cases, such as

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}}
$$

The limit does not exist as the indeterminate of $\frac{0}{0}$ is turned into $\frac{0}{0} \cdot \frac{1}{0}$

Whenever we have a limit

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)} \rightarrow \frac{n}{0}, n \neq 0
$$

Squeeze Theorem and Infinite Limits Sept. 15

We have the possibility of have a vertical asymptote and we should check what happens on both sides of the limit to see if the function blows up or stays

Counterexample: Consider the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}
$$

Something amazing...

Definition: If when we pick values of x close enough to c (in the domain of f) that all the values of $f(x)$ can be made arbitrary large we say that

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

We can define the right and left-hand limit to be infinity in the same way.

So, in the case of the above

Practice: Find all the values of x where the function has a vertical asymptote. Do the left and right-hand limits equal each other?
a. $\frac{x^{2}-3 x+2}{x^{2}-3 x-4}$
b. $\frac{x^{2}+x-2}{x^{3}+2 x^{2}}$
c. $\frac{x}{1-\cos x}$
d. $\ln \left(\frac{x-1}{x}\right)$

If we're comfortable letting $f(x) \rightarrow \infty$ as $x \rightarrow c$ we should be motivated to consider the case where $f(x) \rightarrow L$ as $x \rightarrow \infty$ Discussion: How would you define this limit

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

And what would be the interpretation of it on a graph?

When determining these limits, it is necessary to consider the rate of growth of certain classes of functions

- Exponentials: $s(x)=e^{x}$
- Polynomials and power functions (power >1): $a(x)=x^{N}, N>1$ something like x^{2}
- Lines: $b(x)=x$
- Radicals and power functions (power <1): $c(x)=x^{n}, 0<n<1$ something like \sqrt{x}
- Logarithms: $d(x)=\ln x$
- Functions that don't grow unbounded: $y_{1}=k ; y_{2}=\sin x ; y_{3}=e^{-x} ; y_{4}=\frac{1}{x}$

We get three cases. Assume that $F(x)$ grows faster than $f(x)$ and $g(x)$ is in the same class of functions as f and we have that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$

Case 1: $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}$

Case 2: $\lim _{x \rightarrow \infty} \frac{f(x)}{F(x)}$

Case 3: $\lim _{x \rightarrow \infty} \frac{F(x)}{f(x)}$

Practice: Determine the following limits
a. $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$
b. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+e^{-x}}{-2 x^{2}}$
c. $\lim _{x \rightarrow \infty} \frac{2+\sqrt{x}}{\ln ^{2} x}$
d. $\lim _{x \rightarrow \infty} \frac{x \cdot \ln x+x}{x^{2}+\ln x}$
e. $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-\sqrt{x^{2}-x}\right)$
f. $\lim _{x \rightarrow 0^{+}} \sin \frac{1}{x}$

Practice Problems: 2.1: \# 26-30, 53-56
2.2: \# 1-16 (select), 23-28 (select), 43-46, 49, 50, 52

Textbook Readings: Page 61, 65-68, 71
Workbook Practice: Page 50-59, 69-79
Next Day: Continuity

