Squeeze Theorem and Limits with Infinity

Goal:

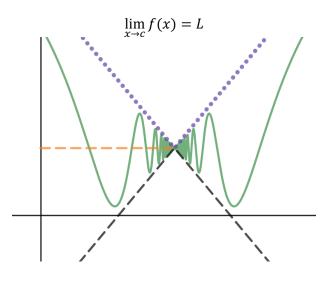
- Can use squeeze theorem to determine the value of limits
- Can use the limit of $\frac{\sin x}{x}$ and $\frac{\cos x 1}{x}$ to evaluate certain limits
- Can determine the limit as $x \to \infty$ using substitution, graphs, and squeeze theorem
- Can give an interpretation of a limit being ∞

Terminology:

• Squeeze Theorem

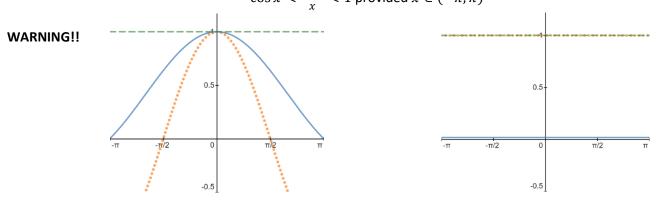
Theorem: Let (a, b) be some interval such that $g(x) \le f(x) \le h(x) \forall x \in (a, b), x \ne c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$

Then



This is the Squeeze Theorem.

Consider $f(x) = \frac{\sin x}{x}$ we need to squeeze it between two "nice functions" (that we can find the limit of easily). $\cos x < \frac{\sin x}{x} < 1$ provided $x \in (-\pi, \pi)$



This limit is central to calculus regarding trig functions and is something we will look to use when evaluating trig limits

Now that we know the $\lim_{x\to 0} \frac{\sin x}{x} = 1$ we can use that limit to find other limits. For example, determine the following. $\lim_{x\to 0} \frac{\tan 2x}{x}$

$$\lim_{x \to 0} \frac{\tan 2x}{x}$$

Practice: Determine

 $\lim_{x \to 0} \frac{3x}{\sin x}$ a.

b. $\lim_{x \to 0} \frac{\sin x^2}{x}$

c.
$$\lim_{x \to 0} \frac{x^2 + 5x - \sin x}{x}$$
 d. $\lim_{x \to 1} \frac{\sin(x-1)}{x^2 - 3x + 2}$

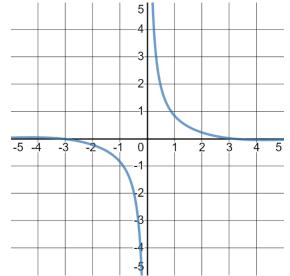
e.
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

f. $\lim_{x \to \pi} \frac{\sin x}{x - \pi}$

In some cases, such as

$$\lim_{x \to 0} \frac{\sin x}{x^2}$$

The limit does not exist as the indeterminate of $\frac{0}{0}$ is turned into $\frac{0}{0} \cdot \frac{1}{0}$



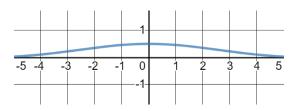
Whenever we have a limit

$$\lim_{x \to c} \frac{f(x)}{g(x)} \to \frac{n}{0}, n \neq 0$$

We have the possibility of have a **vertical asymptote** and we should check what happens on both sides of the limit to see if the function blows up or stays

Counterexample: Consider the limit

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$



Something amazing...

Definition: If when we pick values of x close enough to c (in the domain of f) that all the values of f(x) can be made arbitrary large we say that

$$\lim_{x \to c} f(x) = \infty$$

We can define the right and left-hand limit to be infinity in the same way.

So, in the case of the above

Practice: Find all the values of *x* where the function has a vertical asymptote. Do the left and right-hand limits equal each other?

a.
$$\frac{x^2 - 3x + 2}{x^2 - 3x - 4}$$
 b. $\frac{x^2 + x - 2}{x^3 + 2x^2}$

c.
$$\frac{x}{1-\cos x}$$
 d. $\ln\left(\frac{x-1}{x}\right)$

If we're comfortable letting $f(x) \to \infty$ as $x \to c$ we should be motivated to consider the case where $f(x) \to L$ as $x \to \infty$ Discussion: How would you define this limit

$$\min_{x \to \infty} f(x) = L$$

And what would be the interpretation of it on a graph?

Unit 1: Limits and Continuity

When determining these limits, it is necessary to consider the rate of growth of certain classes of functions

• Exponentials: $s(x) = e^x$

- Polynomials and power functions (power > 1): $a(x) = x^N$, N > 1 something like x^2
- Lines: b(x) = x
- Radicals and power functions (power < 1): $c(x) = x^n$, 0 < n < 1 something like \sqrt{x}
- Logarithms: $d(x) = \ln x$
- Functions that don't grow unbounded: $y_1 = k$; $y_2 = \sin x$; $y_3 = e^{-x}$; $y_4 = \frac{1}{x}$

We get three cases. Assume that F(x) grows faster than f(x) and g(x) is in the same class of functions as f and we have that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$

Case 1: $\lim_{x \to \infty} \frac{f(x)}{g(x)}$

Case 2: $\lim_{x \to \infty} \frac{f(x)}{F(x)}$

Case 3: $\lim_{x \to \infty} \frac{F(x)}{f(x)}$

Practice: Determine the following limits

a.
$$\lim_{x \to \infty} \frac{\sin x}{x}$$
 b.
$$\lim_{x \to \infty} \frac{3x^2 + e^{-x}}{-2x^2}$$

c.
$$\lim_{x \to \infty} \frac{2 + \sqrt{x}}{\ln^2 x}$$
 d.
$$\lim_{x \to \infty} \frac{x \cdot \ln x + x}{x^2 + \ln x}$$

e.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right)$$
 f.
$$\lim_{x \to 0^+} \sin \frac{1}{x}$$

Practice Problems: 2.1: # 26-30, 53-56
2.2: # 1-16 (select), 23-28 (select), 43-46, 49, 50, 52
Textbook Readings: Page 61, 65-68, 71
Workbook Practice: Page 50-59, 69-79
Next Day: Continuity