Unit 1: Limits and Continuity Squeeze Theorem and Infinite Limits Sept. 15

Squeeze Theorem and Limits with Infinity

e Can use squeeze theorem to determine the value of limits
cosx—1

e Can use the limit of% and to evaluate certain limits

X
e Can determine the limit as x — oo using substitution, graphs, and squeeze theorem

e (Can give an interpretation of a limit being oo

Terminology:
e Squeeze Theorem

Theorem: Let (a, b) be some interval such that g(x) < f(x) < h(f) V x £ (a,b), x # cand lim g(x) = lim h(x) = L
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This is the Squeeze Theorem.

Conside(f(x) = % we need to squeeze it between two “nice functions” (that we can find the limit of easily).
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This limit is central to calculus regarding trig functions and is something we will look to use when evaluating trig limits




















































































































































































































































































































































































































































































Unit 1: Limits and Canti Squeeze Theorem and Infinite Limits Sept. 15

Now that we know t% Li_r)rg) Sizx = 1 e can use that limit to find other limits. For example, determine the following.
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Unit 1: Limits and Continuity

In some cases, such as
y sinx 9
xl—r}(l) x2 O
The limit does not exist as the indeterminate of is turned into % %
4
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Whenever we have a limit

Squeeze Theorem and Infinite Limits Sept. 15
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We have the possibility of have a vertical asymptote and we should check what happens on both sides of the limit to

see if the function blows up or stays

Counterexample: Consider the limit
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x>0 X X0 5 -4 -3 .‘z 100 1 2 3 45
1 '\
[(m 5\"1‘ | \ =
SO T e = _|
A + (035~ a3 X |+m3)g = =
S >
Something amazing...
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Definition: If when we pick values of x close enough to c (in the domain of f) that all the values of f(x) can be made

[ arbitrary large we say that

y li = 0
r'ﬁ,\gay o m\”"r im f(x)
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We can define the right and left-hand limit to be infinity in the same way.

So, in the case of the above }l . Stx
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Unit 1: Limits and Continuity Squeeze Theorem and Infinite Limits Sept. 15

Practice: Find all the values of x where the function has a vertical asymptote. Do the left and right-hand limits equal
each other?
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If we’re comfortable letting f (x) — oo as x — ¢ we should be motivated to consider the case where f(x) = Lasx — oo
Discussion: How would you define this limit
lim f(x) =L
X—00
And what would be the interpretation of it on a graph?
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Unit 1: Limits and Continuity Squeeze Theorem and Infinite Limits Sept. 15
Q{\.Nkhs? determining these limits, it is necessary to consider the rate of growth of certain classes of functions

S

o 2xponentia|s: s(x) =e*

30‘):‘59 — WL \j

ﬁr):k—\ o Polynomials and power functions (power > 1): a(x) = x¥, N > 1 something like x?

o Lines:b(x) =x /

o Radicals and power functions (power < 1): c(x) = x™, 0 < n < 1 something like Vx /’

o Logarithms: d(x) = Inx ﬁ /('l (,6) < w
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We get three cases. Assume that F(x) grows faster than f(x) and g(x) is in the same class of functions as f and we
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Unit 1: Limits and Continuity S W\Q[’ \5 D Squeeze Theorem and Infinite Limits Sept. 15
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Practice: Determine the following limits

a, .. sinx ) b.  3x% et
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Practice Problems: 2.1: # 26-30, 53-56
2.2: # 1-16 (select), 23-28 (select), 43-46, 49, 50, 52

Textbook Readings: Page 61, 65-68, 71

Workbook Practice: Page 50-59, 69-79

Next Day: Continuity















































































































































































































































































































































































































































































































































































































































































































































































































































































