Continuity and Intermediate Value Theorem

Goal:

- Can use the definition of continuity
- Can identify types of discontinuities
- Understands the significance and application of the intermediate value theorem for continuous functions.

Terminology:

- Continuity at a point
- Removeable, jump, essential discontinuities
- Intermediate Value Theorem
(Weak) Definition: A function f is continuous on the interval $[a, b]$ if and only if it can be drawn with a line that does not come off the paper.

For example, the graph below is continuous on most intervals but there is a problem at $x=1$ that we

Draw different ways that a function could fail to be continuous at a point $x=c$. Then using limits, explain why these are not continuous.

(Strong) Definition: A function f is continuous on the interval $[a, b]$ if and only if

If a function fails the definition of continuity it is said to be discontinuous
There are a couple other interesting ways we could be discontinuous:
Example 1: Oscillating Discontinuity, $f(x)=\sin \left(\frac{1}{x}\right)$

Example 2: Everywhere discontinuous, $I_{Q}(x)=\left\{\begin{array}{lr}1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$

Arguably the only nice discontinuities are removeable because they can easily be "fixed" through the use of a piecewise function.

For example, we can make the function $f(x)=\frac{\sin x}{x}$ continuous at $x=0$

Example: Make the following functions continuous $\forall x \in \mathbb{R}$
a. $f(x)=\frac{x^{2}+x-12}{x-3}$
b. $g(x)=\frac{\sec x-1}{x}$
c. $h(x)=\left\{\begin{array}{cc}2^{x}, & x<1 \\ a x-1, & x \geq 1\end{array}\right.$
Find a so h is continuous
d. $\quad k(x)=\left\{\begin{array}{lr}\frac{1-\cos x}{x}, & x<0 \\ u(x), & 0 \leq x \leq 2 \\ \frac{\sin (\pi x)}{x-2}, & x>2\end{array}\right.$

Find $u(x)$ so k is continuous

Property: If f is continuous at the point b and $\lim _{x \rightarrow c} f(x)=b$ then

$$
\lim _{x \rightarrow c} g(f(x))=g\left(\lim _{x \rightarrow c} f(x)\right)=g(b)
$$

Property: If f and g are continuous then $f(g(x))$ is continous.
Prove this!

Continuity is one of the most important characteristics of functions and a requirement for many theorems and properties of functions. The first such example you will see is The Intermediate Value Theorem which states:

Theorem: If f is continuous on the interval $[a, b]$, then it takes on every value between $f(a)$ and $f(b)$.
Illustrate this theorem and make an argument why it is true.

Using the theorem we can show that things exist. For example, show that $x^{2}+x=\cos x$ has a solution.

Practice: Show that $\sin (\cos x)=x^{2}$ has at least one solution

Illustrate why IVT does not hold when a function is continuous on (a, b)

Practice Problems: 2.3: \# 11-18, 19-30 (select), 35-42, 46-49
Textbook Readings: Page 73-79
Workbook Practice: Page 60-68, 80-81
Next Day: Instantaneous rate of change and derivative at a point

