Differentiability and Continuity
Goal:

- Can determine if a function is differentiable based on its graph and using the limit definition.
- Understands why differentiability implies continuity.

Terminology:

- Local linearity
- Differentiable

$$
\sin x \sim \sim x+\operatorname{lin}
$$

Last class we eneded before consider this problem: Given that f is continuous and $f^{\prime}(1)=2$ and that $f(1)=3$, how could we approximate $f(1.05)$?

$$
\text { slope e } x=1 \text { is } 2
$$

$$
1.05 \approx 1
$$

use tangent line

$$
\begin{aligned}
& \text { tungus line } \\
& y=2(x-1)+3=3.1 \text { put in } \\
& 1.05
\end{aligned}
$$

The idea is that if we don't move far away, then the tangent line looks like the graph: That is the graph is locally linear if it has a derivative.

Consider the following graph of f, we want to find f^{\prime}

$$
f^{\prime}(z)=\text { a lot of }
$$

We say a function is differentiable at $x=c$ if $f^{\prime}(c)$ exists. This means the limits below exist

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \quad \Rightarrow \text { both sides }
$$

This leads us to a few conditions that would make the function NOT differentiable at a point.

1. Corner, such as $f(x)=|x|$ at $x=0$
 find $f^{\prime}(0)$ and 1 went this to be a problem

$$
\lim _{x \rightarrow 0} \frac{|x|-0}{x-0}=\lim _{x \rightarrow 0} \frac{|x|}{x}
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1
$$

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1
$$

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}
$$

NOT Differentiable!
2. Jump, such as $g(x)=\left\{\begin{array}{l}\frac{|x|}{x}, x \neq 0 \\ 1, x=0\end{array}\right.$ at $x=0$

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(\theta)}{x-\theta}
$$

$$
\lim _{x \rightarrow 0} \frac{f(x)-1}{x}
$$

3. Hole, such as

$$
h(x)=\left\{\begin{array}{r}
x+1, x \neq 0 \\
2, x=0
\end{array} \quad \text { at } x=0\right.
$$

4. Asymptote, such as $k(x)=\frac{1}{x}$ at $x=0$

5. Cusp, such as $p(x)=\sqrt{|x|}$ at $x=0$

6. Vertical Tangent, such as $q(x)=\sqrt[5]{x}$ at $x=0$

A criticial consequence of these cases is that：If a function is differentiable at $x=c$ is MUST be continuous at $x=c$ ．

$$
\begin{aligned}
& \text { Proof: } \\
& \text { If ditterertiable } \underset{\text { then } /}{\Rightarrow} \\
& \text { implies } \\
& \text { assume } f \text { is differentiable e } x=c \\
& \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \in \mathbb{R} \\
& \begin{array}{l}
\text { wont to show } \lim _{x \rightarrow c} f(x)= \\
\text { 三 Show } \lim _{x \rightarrow c}(f(x)-f(c))=0
\end{array} \\
& \lim _{x \rightarrow c}(f(x)-f(c)) \frac{(x-c)}{x-c}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}-(x-c) \\
& =\lim _{x \rightarrow c} \frac{f(x)-f c)}{x-c} \cdot \lim _{x \rightarrow c}(x-c) \\
& =f^{\prime}(c) \cdot 0=0 \quad \square \\
& \text { Differentiable smooth }
\end{aligned}
$$

