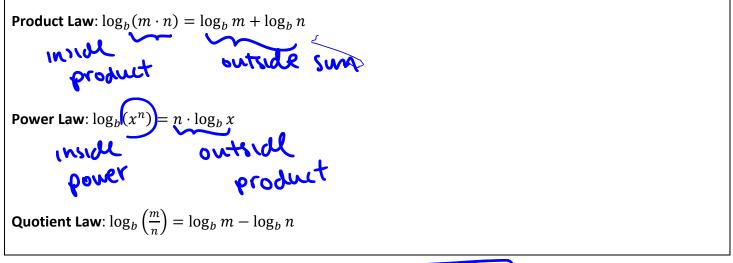
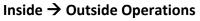
1

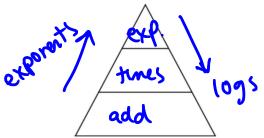
Log Laws

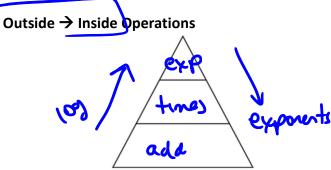
KNOW	DO	UNDERSTAND
The basic log laws and the change of base law	Can use the log laws to simplify expressions and evaluate logs of different bases.	 Function Characteristics: Can determine the domain of a sum of logarithms Transformations: Can relate horizontal transformations to vertical transformations using log laws
Vocab & Notation		
 Change of base 		

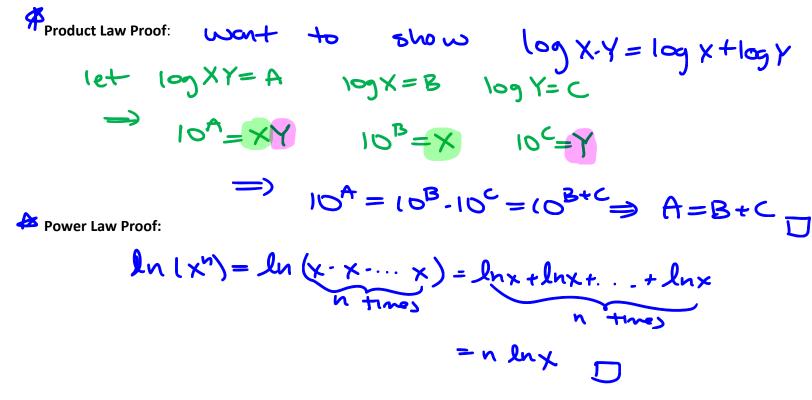
In grade 9 and 10 you learned about the exponent laws and know that

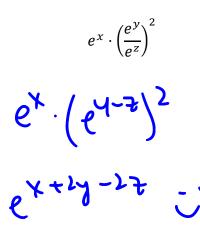

$$b^{x} \cdot b^{y} = b^{x+y} \qquad (b^{x})^{y} = b^{xy} \qquad b^{-1} = \frac{1}{b}$$

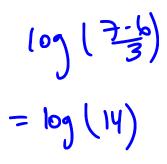

$$\underbrace{b \cdot b \cdots b}_{x} \cdot \underbrace{b \cdot b \cdots b}_{y} = \underbrace{b \cdot b \cdots b}_{x+y} \qquad \underbrace{b^{x} \cdot b^{x} \cdots b^{x}}_{y} = b^{\frac{x+\cdots+x}{y}} \qquad \text{By definition}$$


Using function notation if $g(x) = b^x$ then the above laws for exponents give unique and defining characteristics:




Logarithms, being the inverse of exponentials, have similar laws:





So just like we would simplify exponential functions we can simplify logs.

Practice: Use log laws to simplify the following into a single log: $\log 7 - \log 3 + \log 6$

 $\ln x + 2(\ln y - \ln z)$ $\ln x + 2\ln \left(\frac{x}{2}\right)$ $\ln x + 2\ln \left(\frac{y^{2}}{2^{2}}\right)$ $\ln \left(\frac{x}{2^{2}}\right)$ $\ln \left(\frac{x}{2^{2}}\right)$ $(3)n 6 - \ln 9 - \ln 8$ $\ln 6^{3} - \ln 9 - \ln 8$ $\ln 6^{3} - \ln 9 - \ln 8$ $\ln \left(\frac{b^{3}}{9}\right) - \ln 8$ $\ln \left(\frac{b^{3}}{9 \cdot x}\right) = \ln 3$

ln

$$-\frac{1}{2}\ln 81 - 2\ln 3$$
81^{-1/2} - $\ln 3^2$

$$\ln \frac{1}{4} - \ln 9 = \ln \left(\frac{1}{81} \right)$$

$$-3 \log 2 + (2 \log 7 - \log 5)$$

$$-\log 2^{3} + \log 7^{2} - \log 5$$

$$= \log \left(\frac{49}{40}\right)$$

$$\begin{array}{l}
\ln \frac{10}{5} \\
\frac{1}{5} \\
\frac{1}{$$

 $2\log_2(12+3) - (\log_2 5 + \log_2 4)$

$$\log_{2} \frac{15^{2} - \log_{2} 20}{\log_{2} \left(\frac{45}{4}\right)}$$

We need to be careful about the domain when we simplify log functions:

Example: Simplify the following and state the overall domain.

$$f(x) = -\ln(x+2) + 2 \ln(1-x) - \ln(x(x+1))$$

$$f(x) = \ln(\frac{(1-x)^{2}}{(x+2)x(x+1)})$$

$$(x+2>0 \quad |-x>0 \quad x(x+1)>0$$

$$(x+2>0 \quad |-x>0 \quad x(x+1)>0$$

$$(x+2)>0 \quad |-x>0 \quad |-x>0$$

$$(x+2)>0 \quad$$

1:£., + h ~ folle . . .: .. d stata tha ob IIc <u>.</u>...

Practice: Simplify the following and state the overall domain

$$g(x) = \log x + 2\log(x + 1) - \log((x + 1)(x - 2))$$

$$g(x) = \log \left(\frac{x \cdot (y + 1)^{2}}{(x + 1)(x - 2)}\right) = \log \left(\frac{x \cdot (x + 1)}{x - 2}\right)$$

$$g(x) = \log \left(\frac{x \cdot (y + 1)^{2}}{(x + 1)(x - 2)}\right) = \log \left(\frac{x \cdot (x + 1)}{x - 2}\right)$$

$$(x - 2)(x + 1) > 0$$

$$(x - 2)(x +$$

Practice Problems: 8.3 page 400-403 # 1-3, 5-12, 20, C1, C2