Log Laws

KNOW The basic log laws and the change of base law	DO Can use the log laws to simplify expressions and evaluate logs of different bases.	UNDERSTAND Function Characteristics: Can determine the domain of a sum of logarithms Transformations: Can relate horizontal transformations to vertical transformations using log laws
Vocab \& Notation $\bullet \quad$ Change of base		

In grade 9 and 10 you learned about the exponent laws and know that

$$
\begin{aligned}
b^{x} \cdot b^{y} & =b^{x+y} & \left.b^{x}\right)^{y} & =b^{x y} \\
\underbrace{b \cdot b \cdots b}_{x} \cdot \underbrace{b \cdot b \cdots b}_{y} & =\underbrace{b \cdot b \cdots b}_{x+y} & \underbrace{b^{x} \cdot b^{x} \cdots b^{x}}_{y} & =b^{\underbrace{x+\cdots+x}_{y}}
\end{aligned}
$$

$$
b^{-1}=\frac{1}{b}
$$

By definition

Using function notation if $g(x)=b^{x}$ then the above laws for exponents give unique and defining characteristics:

Logarithms, being the inverse of exponentials, have similar laws:
Product Law: $\log _{b}(m \cdot n)=\log _{b} m+\log _{b} n \quad f(x)=\ln x$

$$
-f(m \cdot n)=f(m)+f(n)
$$

INSIDE product DUTSIDE sum
Power Law: $\log _{b}\left(x^{n}\right)=n \cdot \log _{b} x$

$$
f\left(x^{n}\right)=n \cdot f(x)
$$

audient $\operatorname{tawi}^{2} \log _{(}\left(\frac{m}{n}\right)=\log _{b} n-\log _{b} n \quad f\left(\frac{x}{y}\right)=f(x)-f(y)$

Inside \rightarrow Outside Operations

Outside \rightarrow Inside Operations

Unit 4: Exponential Growth
Product aw proof: want to show $\ln x y=\ln x+\ln y$
Say

$$
\begin{array}{rlrl}
\ln x y & =A & \ln x=B & \ln y=C \\
x y & =e^{A} & x=e^{B} & y=e^{C} \\
& \Rightarrow e^{A}=e^{B} \cdot e^{C}=e^{B+C} \Rightarrow A=B+C
\end{array}
$$

Power Law Proof:

$$
\ln x^{n}=n \ln x
$$

$$
\begin{aligned}
\ln x^{n}=\ln (\underbrace{x \cdot x \cdots x}_{n \text { times }}) & =\underbrace{\ln x+\ln x+\ldots+\ln }_{n \text { times }} \ln x \\
& =n \cdot \ln x
\end{aligned}
$$

So just like we would simplify exponential functions we can simplify logs.

$$
e^{x} \cdot\left(e^{y-7} \cdot\left(\frac{e^{y}}{e^{z}}\right)^{2}\right)^{z}
$$

$$
j
$$

$$
\begin{aligned}
& \ln x+2(\ln y-\ln z) \\
& \ln x+2 \cdot \ln \frac{y}{z} \\
& \ln x+\ln \left(\frac{y}{z}\right)^{2} \\
& \ln \left(x \cdot \frac{y^{2}}{z^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \log 7-(\log 3-\log 6) \\
& \log 7-\log (3 / 6) \\
& \log \left(\frac{7}{3 / 6}\right)=\log 14
\end{aligned}
$$

Practice: Use log laws to simplify the following into a single log:

$$
3 \ln 6-\ln 9-\ln 8
$$

$$
\ln 6^{3}-\ln 9-\ln 8
$$

$$
\ln \left(\frac{b^{3}}{9 \cdot 8}\right)
$$

$$
=\ln (3)
$$

$$
\begin{gathered}
\ln 81^{-\frac{1}{2} \ln 81-2 \ln 3}-\ln 3^{2} \\
\ln \frac{1}{9}-\ln 9 \\
\ln \left(\frac{1}{81}\right) \\
2 \log _{2}(12+3)-\left(\log _{2} 5+\log _{2} 4\right) \\
\log _{2} 15^{2}-\log _{2} 20 \\
\log _{2}\left(\frac{15^{2}}{20}\right) \\
=\log _{2}\left(\frac{75}{4}\right)
\end{gathered}
$$

$$
\begin{gathered}
\frac{-\log 2^{3}+\log 7^{2}-\log 5}{\log \left(\frac{7^{2}}{2^{3} \cdot 5}\right)} \\
\ln \left(0-\ln 5 * \frac{\ln 10}{\ln 5} \neq \ln \frac{10}{5}\right. \\
\ln (10-5) \frac{1}{\ln 5} \cdot \ln 10 \\
\left(\ln 10^{\left.\frac{1}{\ln 5}\right)}\right.
\end{gathered}
$$

We need to be careful about the domain when we simplify log functions:
Example: Simplify the following and state the overall domain.

$$
f(x)=\ln \left(\frac{(1-x)^{2}}{(x+2) x(x+1)}\right) \quad \begin{array}{ll}
f(x)=-\ln (x+2)+2 \ln (1-x) \\
x>-\ln (x(x+1)) \\
x>0
\end{array}
$$

Practice: Simplify the following and state the overall domain

$$
g(x)=\log x+2 \log (x+1)-\log ((x+1)(x-2))
$$

$$
g(x)=\log \left(\frac{x(x+1)}{(x-2)}\right)
$$

$$
(x-1)(x-2)>0
$$

$$
x<-1 \text { or } x>2
$$

$$
\text { Change of Base Law } \log _{b} a=\frac{\log _{x} a}{\log _{x} b}=\frac{\ln a}{\ln b}=\frac{\log a}{\log b}
$$

Proof:

$$
\left.\begin{array}{rl}
\log _{b} a=Y \Rightarrow a=b^{Y} \Rightarrow & \ln a=\ln b^{Y} \\
\Rightarrow & \ln a=Y \ln b \\
& \Rightarrow \frac{\ln a}{\ln b}=Y=\log _{b} a \square \\
\log _{5} 1000
\end{array} \quad \log 1000-3=1, c\right)
$$

Practice: Evaluate the following logarithms

$$
\begin{aligned}
& \log _{2} 20=\frac{\ln 20}{\ln 2}=4.32 \\
& \frac{\log 20}{\log 2}=4.32 \ldots \\
& \log _{\pi} e \\
& \frac{\ln e}{\ln \pi}=\frac{1}{\ln \pi}=0.87 \ldots
\end{aligned}
$$

$$
\frac{\log 1000}{\log 5}=\frac{3}{\log 5}=4.29 \ldots
$$

$$
\log _{\sqrt{2}} \sqrt{8}
$$

$$
\begin{array}{r}
\frac{\ln 8^{1 / 2}}{\ln 2^{1 / 2}}=\frac{\ln 8}{\ln 2}=\frac{\ln 2}{\ln 2} .3 \\
=3
\end{array}
$$

Practice Problems: 8.3 page 400-403 \# 1-3, 5-12, 20, C1, C2

