Modelling Exponential Functions

KNOW	DO	UNDERSTAND
The basic shape an exponential model will follow.	Can solve problems involving exponential functions	<i>Function Characteristics</i> : Can build a model for an exponential function. Understands the significance of the asymptote to the model and the behaviour around the asymptote. Can justify when an exponential function will reach the asymptote.
Vocab & Notation None 		

When we model an exponential problem there are four cases that the exponential could look like:

Unit 4: Exponential Growth

Example: A glass of ice water $(2^{\circ}C)$ is left in a room that is $20^{\circ}C$. If it is left for 2.5 hours, at which time the temperature of the glass of water warmed to $9^{\circ}C$. Determine a function for the temperature of water after t hours of being left out in the room. When will the water be $15^{\circ}C$? When will the water be room temperature?

Room Temp = 20 = d exp(x) $Y = \frac{11}{18}$ T = 2.5 $T(t) = -18\left(\frac{11}{18}\right)^{\frac{t}{2.5}} + 20$ = -(8 exp $(\frac{\pm}{25} ln(\frac{11}{18}))$ +20 T(t)=15=-18 exp (生 ln(出))+20 $l_{\eta}\left(\frac{15-20}{-18}\right) \cdot \frac{2.5}{\ln(-10)} = t = 6.5$ after 6.5 hrs \Rightarrow 6 hrs + 30 min $17.45 = -18 \exp\left(\frac{t}{2.5}\ln(\frac{4}{18})\right) + 20$ 19.95 = 20 1. 10.05). 2.5 = 27.9 hrs

$$\frac{18}{18} \ln(\frac{11}{18}) = 20$$

$$\Rightarrow 29 \text{ hrs } + 53 \text{ min} = \frac{19}{14} \text{ hrs}$$

$$\sqrt{30} \text{ hrs}$$

 $T: \mathbb{Q} \rightarrow \mathbb{Q} \land [2, 20]$ +>0