Polynomial Characteristics

KNOW	DO	UNDERSTAND
Identify the end	Sketch a graph of a polynomial by hand.	Function Characteristics:
behaviour and	Use demos/geogebra to graph	Can explain why the multiplicity of the
intercepts of a	polynomials and reason how their	zero causes the observed behaviour.
polynomial.	characteristics combine.	Can justify why polynomial behaviour
Identify the zeros from	Determine the interval when a	is mostly determined by its degree and
a factored form.	polynomial is positive or negative.	only by its components near zero.
Vocab \& Notation		
\quad- End behaviour - Multiplicity 		

Definition: Recall that a polynomial is anything of the form:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad, x \in \mathbb{R}
$$

Where $a_{0}, \ldots, a_{n} \in \mathbb{R}$, and $n \in \mathbb{Z}, n \geq 0$.
We are going to mostly focus on when $n \leq 5$ but we should be able to predict behaviour for any degree.

Note that the y-intercept is always at zero, if we want to change it we need to

$$
q(x)=p(x)+d \leftarrow \text { constant term }
$$

If we want the polynomial to move in a different direction we need to reflect over x-axis

$$
q(x)=-p(x) \Rightarrow \text { change quadrants moved thru }
$$

Since a general polynomial is just the sum of these basic components, I like to think of the terms as ingredients and the strength/amount of the ingredient depends on the degree (and the coefficient to a lesser amount).

Example: Graph the polynomial:

$$
p(x)=-\frac{1}{2} x^{4}+2 x^{3}-2
$$

III

Practice: Sketch the polynomials and build possible equations for the graphs

We are going to learn tomorrow how to factor polynomials, but we can analyze the zeros right now. We know that we can factor quadratics and similarly we can factor higher degree polynomials.
$(x+2)(x+2)(x \nless 2)$ zeros 1 mull.

Example: $p(x)=-x^{2}(x-1)(x+2)^{3}=-x^{6}$

$$
x=0 \quad 2
$$

$$
+\ldots+8 x^{2}
$$

$$
x=1
$$

$$
x=-2
$$

III
VI that zero

$$
x \in(-2,0) \cup(0,1)
$$

Sketch the polynomials or determine their equation and state the intervals they are positive.

Practice Problems: 3.1 page 114 - 116 \# 1-5, 12, 13, C1, C2, C3
3.4 page $147-152$ \# 1-6, 10, 11, 14, 20, 22, C1, C2, C3 (\#7-9 are good, but leave for after tomorrow)

