Factoring Polynomials

KNOW	DO	UNDERSTAND
How to find the remainder	Factor polynomials	Function Characteristics:
using remainder theorem.	Use long division to	That the output of a polynomial at any point $x = c$ is
How to test a factor using	divide polynomials	the remainder after being divided by $x - c$.
factor theorem		Polynomials in $\mathbb{Z}[X]$ can be prime and have similar
		properties to integers (gcd/lcm, etc).
Vocab & Notation		
• Set of polynomials with integer coefficients: $\mathbb{Z}[X]$		
Irreducible polynomial		
Factor Theorem		
Integer Root Theorem & Rational Root Theorem		
Remainder Theorem		

We are motivated to factor polynomials just like we factor integers, but to do so we need to be able to divide polynomials. As we are motivated to factor like integers, we are only going to look at polynomials whose coefficients are integers.

Definition: Let $\mathbb{Z}[X]$ be the set of polynomials with integer coefficients. From now on, any polynomial I think about will be in this set and we will factor in this set.

For example, factor 4199.

We want to take these ideas and help us factor:

 $p(x) = x^4 - x^3 - 7x^2 + 13x - 6$

Theorem: The factor theorem states that if (x - a) divides p(x) then p(a) = 0.

But how do we find *a*?

Theorem: The **integer root theorem** states that if (x - a) is a factor of $p(x) = x^n + \dots + C$ then a is a factor of C.

*Note: there is a larger version of this theorem called the **rational root theorem**: given the polynomial $p(x) = Ax^n + \dots + C$, if $x = \frac{a}{b}$ is a zero we will have that a is a factor of C and b is a factor of A.

So, let's factor this polynomial!

 $p(x) = x^4 - x^3 - 7x^2 + 13x - 6$

Practice: Factor the polynomials and sketch them. State the intervals the polynomial is positive.

$$2x^3 - 9x^2 - 6x + 5 \qquad \qquad -x^3 - x^2 + 8x + 12$$

 $x^3 + 2x^2 - 3x - 6$

 $x^4 - 3x^2 - 4$

We can also divide polynomials by polynomials that are not factors and end up with a remainder.

Example: 435 ÷ 7

Example: Simplify the following quotient:

$$\frac{x^4 - 2x^2 + 5x + 1}{x + 2}$$

Theorem: The **remainder theorem** says if p(x) is divided by (x - a) then the remainder is p(a)

Practice: Determine the remainder of the following quotient using long division and verify using remainder theorem.

$$\frac{-x^3 + 2x^2 + 5x - 2}{x - 3}$$

Practice Problems: 3.2 page 124 – 125 # 1-3, 5-11, 14, 15, 17, C1, C2 3.3 page 133 – 135 # 1-8, 15, 16, C1