Factoring Polynomials

We are motivated to factor polynomials just like we factor integers, but to do so we need to be able to divide polynomials. As we are motivated to factor like integers, we are only going to look at polynomials whose coefficients are integers.

Definition: Let $\mathbb{Z}[X]$ be the set of polynomials with integer coefficients. From now on, any polynomial I think about will be in this set and we will factor in this set.

$$
\begin{array}{lll}
3 x^{2}-4 \in \mathbb{Z}[x] & \frac{1}{2} x^{2}+\sqrt{3} \notin \mathbb{Z}[x] & 4 x+3 \\
\text { For example, factor } 1499
\end{array}
$$

Function Characteristics:
That the output of a polynomial at any point $x=c$ is the remainder after being divided by $x-c$. Polynomials in $\mathbb{Z}[X]$ can be prime and have similar properties to integers (gcd/lcm, etc).

Vocab \& Notation

- Set of polynomials with integer coefficients: $\mathbb{Z}[X]$
- Irreducible polynomial
- Factor Theorem
- Integer Root Theorem \& Rational Root Theorem
- Remainder Theorem
try 2? ends in $9 \Rightarrow \Leftarrow$ try 11? $4-1+9-9=3$
try 3? $4+1+9+9=23$ not diusible \quad NOT divisible by 11 try 5 ? ends in $9 \Rightarrow \Leftarrow$
try 7? 4200 is divisible by 7

$$
\Rightarrow 4199 \text { is NoT }
$$

We want to take these ideas and help us factor:
try 11? $\quad 4-1+9-9=3$
NOT divisible by 11
323

Idea 1:

$$
p(x)=(x-a) q(x)=(x-a)\left(x^{3}+\cdots+c\right)=x^{4}+\cdots-a c
$$

$$
p(a)=(a-a) q(a)=0
$$

Idea 2:
a must divide the constant term

Theorem: The factor theorem states that if $(x-a)$ divides $p(x)$ then $p(a)=0$.
But how do we find a ?
Theorem: The integer root theorem states that if $(x-a)$ is a factor of $p(x)=x^{n}+\cdots+C$ then a is a factor of C.
*Note: there is a larger version of this theorem called the rational root theorem: given the polynomial $p(x)=A x^{n}+\cdots+C$, if $x=\frac{a}{b}$ is a zero we will have that a is a factor of C and b is a factor of A.

So, let's factor this polynomial!

$$
p(x)=x^{4}-x^{3}-7 x^{2}+13 x-6
$$

(1) use integer Root Thy
(2) use Factor Thy

$$
p(1)=1-1-7+13-6=0
$$

$\Rightarrow(x-1)$ is a factor!!
$\frac{p(x)}{x-1}$

$$
x-1 \frac{x^{3}-7 x+6}{x^{4}-x^{3}-7 x^{2}+13 x-6}
$$

$$
\frac{-\left(x^{4}-x^{3}\right)}{-7 x^{2}+13 x-6}
$$

$$
-\left(-7 x^{2}+7 x\right)
$$

$$
\begin{gathered}
\pm 1, \pm 2, \pm 3, \pm 6 \\
\Rightarrow(x-1),(x+1), \ldots,(x+6)
\end{gathered}
$$ potential factors of q

$$
\begin{aligned}
& \frac{4199}{13} 32 \\
& 131 / 1 \cdot 10^{3}+1 \cdot 10^{2}+9 \cdot 10+9 \\
& -\frac{\left(3 \cdot 10^{3}+9 \cdot 10^{2}\right.}{2 \cdot 10^{2}+9 \cdot 10+9}
\end{aligned}
$$

$$
-\frac{(6 x-6}{(6 x-6)}=
$$

grenander of $z 50!$

$$
p(x)=(x-1)(\underbrace{x^{3}-7 x+6}_{q(x)})=(x-1)^{2}(x-2)(x+3)>0 \text { when } x>2 \text { or } x<-3
$$

Practice: Factor the polynomials and sketch them. State the intervals the polynomial is positive.

$$
2 x^{3}-9 x^{2}-6 x+5
$$

$$
-x^{3}-x^{2}+8 x+12
$$

see morning notes

$$
x^{3}+2 x^{2}-3 x-6
$$

$$
x^{4}-3 x^{2}-4
$$

We can also divide polynomials by polynomials that are not factors and end up with a remainder.
Example: $4 3 5 \div 7 \quad 7 \longdiv { 4 3 5 } \rightarrow$ whole pieces

$$
\frac{-420}{\frac{15}{14}} \frac{1}{1} \Rightarrow \text { remainder }
$$

$$
\frac{435}{7}=62+\frac{1}{7}
$$

Example: Simplify the following quotient:

$$
\begin{array}{r}
\frac{x^{3}-2 x^{2}+2 x+1}{} \begin{array}{r}
\frac{\left(x^{4}+2 x^{3}\right)}{\left(x^{4}-2 x^{2}+5 x+1\right.} \\
x+2 x^{3}-2 x^{2}+5 x+1
\end{array}=\frac{x^{4}-2 x^{2}+5 x+1}{x+2}=Q(x)+\frac{r(x)}{q(x)} \\
\frac{-\left(-2 x^{3}-4 x^{2}\right)}{2 x^{2}+5 x+1} \\
\frac{\left(2 x^{2}+4 x\right)}{x+1}
\end{array} \quad \Rightarrow \frac{p(x)}{x+2}=x^{3}-2 x^{2}+2 x+1-\frac{1}{x+2}
$$

Theorem: The remainder theorem says if $p(x)$ is divided by $(x-a)$ then the remainder is $p(a)$

$$
\Rightarrow p(x)=Q(x) \cdot q(x)+r(x) \Rightarrow p(a)=Q(x) \cdot\left(\frac{\rho}{x}-a\right)+r \Rightarrow p(a)=r
$$

Practice: Determine the remainder of the following quotient using long division and verify using remainder theorem.

$$
\frac{p(x)}{q(x)}=\frac{-x^{3}+2 x^{2}+5 x-2}{x-3}=-x^{2}-x+2+\frac{4}{x-3}
$$

$$
\begin{array}{ll}
\frac{-x^{2}-x+2}{} q(x) & x-3 \\
\frac{\left.-1-x^{3}+3 x^{2}\right)}{-x^{2}+5 x-2} & \\
\frac{-\left(1-x^{2}+3 x\right)}{2 x-2} & p: \mathbb{R} \rightarrow \mathbb{R} \quad(3,4) \text { on } p \\
& p: 3 \mapsto y \\
& p(3)=-27+18+15-2 \\
& \\
& =4
\end{array}
$$

