Polynomial Assignment: Due Saturday before 3pm

Name(s): \qquad
**Remember to each include a 300-word paragraph describing what your partner did when submitting work with a partner. Only one assignment is needed but both partners need to write an explanation what the other did.

This assessment is focused on the following competencies:

- Thinking \& Understanding: Do you know the major characteristics of a polynomial from the equation and a graph? Do you understand how to divide polynomials? Do you understand how the remainder theorem works?
- Communicating \& Representing: Can you express/illustrate characteristics of a polynomial. Can I understand your division work by glancing at it? Can you describe and justify characteristics of a polynomial and say what you intend?

1. (3.1; Thinking) What is wrong with the sketch of the following polynomial? Note there are many things wrong with the graph, describe the 2 or 3 most obvious mistakes.

$$
p(x)=x^{4}-3 x^{3}+x^{2}+1
$$

2. (3.1; Communicating) If a polynomial has degree n, what can be said about the maximum and minimum number of zeros? Justification is needed to support your conclusion.
3. (3.2; Communicating) Use long division to write the following quotient as a polynomial plus a remainder in the form

$$
\begin{gathered}
\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a} \\
\frac{2 x^{4}-x^{3}-2 x-3}{x-2}
\end{gathered}
$$

4. (3.2; Communicating) Use synthetic division to simplify

$$
\frac{x^{5}+4 x^{4}-2 x^{2}-7 x+4}{x+4}
$$

5. (3.2; Thinking) Write the following quotient as a polynomial plus a remainder as in \#3

$$
\frac{x^{4}+3 x^{2}-x+1}{x^{2}+1}
$$

6. (3.4; Thinking) Build an equation for the following polynomial. Use technology to graph your equation and confirm it looks accurate. Include a picture of your graph. Note that the scale has been omitted for the y-axis.

7. (3.2; Thinking) Determine an equation to the polynomial $p(x)$ such that the following properties are satisfied - $\quad p(x)$ has a remainder of 1 when divided by $x-1$

- $\quad p(x)$ has a remainder of 2 when divided by $x-2$
- $\quad p(x)$ is cubic and monic (the x^{3} has coefficient 1)

Note there are infinitely many solutions and a great solution would show why.
8. (3.3 \& 3.4; Communicating) A particle is travelling along a number line (positive to the right; negative to the left) with velocity

$$
v(t)=t^{3}-4 t^{2}-3 t+18
$$

Where t is time. On what interval(s) is the particle's velocity positive? (when is it moving to the right?)

The acceleration for the same particle is

$$
a(t)=3 t^{2}-8 t-3
$$

What interval(s) is the particle's acceleration negative? (when is it being pushed toward the left?)

