Area Approximation Solutions

a. Using 8 subintervals we have $x_{0}=0, x_{1}=0.5, \ldots, x_{7}=3.5, x_{8}=4$

$$
\begin{aligned}
& \Delta x=\frac{4}{8}=\frac{1}{2} \\
\text { Area }= & \frac{1}{2} \sum_{k=1}^{8} 2 \cdot x_{k}^{-x_{k}}=\sum_{k=1}^{8} x_{k}^{-x_{k}} \\
= & 0.5^{-0.5}+1^{-1}+\cdots+3.5^{-3.5}+4^{-4} \\
= & 3.363 \ldots
\end{aligned}
$$

This will be an underestimation since f is decreasing (mostly)

b. Using trapezoids, we have

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}\left[\sum_{k=0}^{7} x_{k}^{-x_{k}}+\sum_{k=1}^{8} x_{k}^{-x_{k}}\right] \\
& =\frac{1}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{7}\right)+f\left(x_{8}\right)\right) \\
& =0^{0}+2 \cdot 0.5^{-0.5}+\cdots+2 \cdot 3.5^{-3.5}+4^{-4} \\
& =3.861 \ldots
\end{aligned}
$$

Note that 0^{0} for us is 1 as $f(0)=2$. Overall, this is likely very close to the true value. It will underestimate around $[0,1]$ as the function is concave down and will overestimate the rest of the time. But the concavity is much greater on $[0,1]$. That it underestimates much more than we overestimate.
c. Using midpoint and 4 subintervals we have $\left\{x_{1}=0.5, x_{2}=1.5, x_{3}=\right.$ $\left.2.5, x_{4}=3.5\right\}$ and $\Delta x=1$

$$
\begin{aligned}
\text { Area } & =\sum_{k=1}^{4} 2 \cdot x_{k}^{-x_{k}} \\
& =2\left(0.5^{-0.5}+1.5^{-1.5}+2.5^{-2.5}+3.5^{-3.5}\right) \\
& =4.144 \ldots
\end{aligned}
$$

d. With $n=100$ we have

Type

Right Endpoint

Left Endpoint
Sigma Notation

$$
\frac{4}{100} \sum_{k=1}^{100} 2 \cdot x_{k}^{-x_{k}}, \quad x_{k}=\frac{4 k}{100}
$$

$$
\frac{4}{100} \sum_{k=0}^{99} 2 \cdot x_{k}^{-x_{k}}, \quad x_{k}=\frac{4 k}{100}
$$

Midpoint

$$
\frac{4}{100} \sum_{k=0}^{99} 2 \cdot x_{k}^{-x_{k}}, \quad x_{k}=\frac{4 k}{100}+\frac{2}{100}
$$

$$
\frac{4}{100}\left(1+\left(\sum_{k=1}^{99} 2 \cdot x_{k}^{-x_{k}}\right)+4^{-4}\right), \quad x_{k}=\frac{4 k}{100}
$$

Value 3.9465 ... 4.0261 ... 3.9883 .
3.9828 ...

