The Radian and Angles

KNOW	DO	UNDERSTAND				
How to recognize	Determine coterminal angles to a given angle.	Function Characteristics:				
angles in radians.	Determine the trig ratios of an angle.	Why the (x, y) coordinate on				
What quadrant an	How to use the unit circle and special triangles	the unit circle is $(\cos \theta, \sin \theta)$				
angle is in.						
Vocab & Notation						
Radian						
Co-terminal						
Special Triangle						
Unit Circle						
Secant, Cosecant, Cotanget						

Why is there 360° in a full rotation?

You think trigonometry is about triangles, but really it is about circles.

Definition: One **radian** is equal to the angle made when the arc of a circle is equal to the radius. In general, it is the ratio of the arc to the radius.

Angle (radians) =
$$\frac{\text{Arc Length}}{\text{radius}} \Rightarrow \theta = \frac{a}{r}$$

Where θ is the angle in radians. This may look like a formula, but it is the definition of the radian. This is similar to how π is defined as the ratio between the circumference and the diameter of a circle.

If we go all around the circle, then:

Unit 3: Trigonometry **Example**:

$\frac{\pi}{6}$	$\frac{\pi}{4}$
$\frac{\pi}{2}$	$\frac{\pi}{3}$
100°	250°

**Recall that positive angles move counter-clockwise around the circle, and negative angles move clockwise.

Definition: Angles are considered **co-terminal** if they have the same terminal arms.

Any multiple of 360° or 2π will wrap around back to the same terminal arm so we say the **general form** (which represents all the possible solutions) as

Angle	General Form	Domain	Coterminal Angles
$\frac{19\pi}{4}$		$-2\pi \le \theta < 4\pi$	
$\frac{11\pi}{3}$		$-3\pi \le \theta < \pi$	
$\frac{-17\pi}{6}$		$0 \le \theta < 8\pi$	

Unit 3: Trigonometry

Radian and Angles: May 27

When defining the angle around a circle, it is useful to think of that circle on a grid centered at the origin. Such a circle is defined by the equation:

$$x^2 + y^2 = r^2$$

Where r is the radius of the circle.

As the angle does not change as the radius changes the **unit circle** is the circle with radius 1, centered about the origin.

$$x^2 + y^2 = 1$$

There are a few special angles notice that we build an isosceles right-angle triangle.

Angle, θ	sin θ	$\csc \theta$	$\cos heta$	sec θ	$\tan heta$	$\cot heta$
0						
$\frac{\pi}{6}$						
$\frac{\pi}{3}$						
$\frac{\pi}{2}$						
$\frac{3\pi}{4}$						
π						
3.5						
4						
4.5						
5						
6						
9						

