The Radian and Angles

KNOW

angle is in.

DO

Determine coterminal angles to a given angle. Determine the trig ratios of an angle.

How to use the unit circle and special triangles

UNDERSTAND

Function Characteristics: Why the (x, y) coordinate on the unit circle is $(\cos \theta, \sin \theta)$

Vocab & Notation

How to recognize

angles in radians.

What quadrant an

- Radian
- Co-terminal
- Special Triangle
- Unit Circle
- Secant, Cosecant, Cotanget

Why is there 360° in a full rotation?

You think trigonometry is about triangles, but really it is about circles.

Definition: One radian is equal to the angle made when the arc of a circle is equal to the radius. In general it is the ratio of the arc to the radius.

Angle (radians) =
$$\frac{\text{Arc Length}}{\text{radius}} \Rightarrow \theta = \frac{a}{r}$$

Where θ is the angle in radians. This may look like a formula, but it is the definition of the radian. This is similar to how π is defined as the ratio between the circumference and the diameter of a circle.

If we go all around the circle, then:

go all around the circle, then:

$$arc = 2\pi r \Rightarrow \theta = \frac{2\pi r}{r} = 2\pi r \text{ and } = 360^{\circ}$$

$$\pi = 180^{\circ}$$

^{**}Recall that positive angles move counter-clockwise around the circle, and negative angles move clockwise.

Definition: Angles are considered **co-terminal** if they have the same terminal arms.

Any multiple of 360° or 2π will wrap around back to the same terminal arm so we say the <code>general form</code> (which

represents all the possible solutions) as

19 = 19 quarters rise											
Angle	General Form	Domain	Coterminal Angles								
19π 4	19TT + 2TTM , N&Z	$-2\pi \le \theta < 4\pi$	$\Theta_1 = -\frac{5}{4}\pi + \frac{3}{4}\pi + $								
$\frac{11\pi}{3}$	11TT + 2TTM , NEZ	$-3\pi \le \theta < 3\pi$	$\Theta_{1} = \frac{\pi}{3} , \Theta_{3} = \frac{5\pi}{3}$ $\Theta_{3} = \frac{5\pi}{3}$								
$\frac{-17\pi}{6}$	-17T +2TM, NGZ	$0 \leq \theta < 8\pi$	$\theta_1 = \frac{7\pi}{6}, \theta_2 = \frac{19\pi}{6}, \theta_3 = \frac{31\pi}{6}$								

When defining the angle around a circle, it is useful to think of that circle on a grid centered at the origin. Such a circle is defined by the equation:

 $x^2 + y^2 = r^2$

Where r is the radius of the circle.

As the angle does not change as the radius changes the unit circle is the circle with radius 1, centered about the origin.

SINT = 1 COS #=43

Unit 3: Trigonometry

1-1-5

Radian and Angles: March 3

			SIND		L Cos O	SIND	<u>(040</u>
	Angle, θ	$\sin \theta$	$\csc \theta$	$\cos heta$	$\sec \theta$	an heta	$\cot \theta$
_	0	0	undet. asym.	1	1	٥	undef.
ر ر	$\frac{\pi}{6}$	12	2	13/2	2/13	1/3	13
/	$\frac{\pi}{3}$	5312	2/53	1/2	<u>ک</u>	√3	1/3
*	$\frac{\pi}{2}$	1	1	0	undef	undef	0
<i>א</i>	$\frac{2\pi}{3}$	+ 13/2	3/3	- 1/2	-2	-13	- 1/3
7	$\frac{5\pi}{6}$	2	م	-13/2	-2/25	-L V3	-13
-	π	D	undef.	-1	-1	O	undef
\$	3.5	-0,35	-2.85	-0.94	-1.07	0.37	2.67
-	4	-0.76	-1.32	-0.65	-1.53	1.16	0.86
-	4.5	-6.98	-1.02	-0.21	-4.74	4.64	0.21
-	5	-0.96	-1.04	0.28	3.52	-3.38	-0.30
-	6	-0,28	-3.58	0.96	1.04	-0.29	-3.44

Unit 3: Trigonometry Radian and Angles: March 3

Practice Problems: 4.1 page 175 – 176 # 1-13

4.3 page 200 – 203 # 1-6, 9, 12-14, 16, 17