The Radian and Angles

KNOW		
How to recognize	DO	UNDERSTAND
angles in radians.	Determine coterminal angles to a given angle.	Function Characteristics: What quadrant an angle is in.
How to use the unit circle and special triangles $(x, y) \operatorname{coordinate~on~}$		
Vocab \& Notation		
the unit circle is $(\cos \theta, \sin \theta)$		
- Radian		
- Co-terminal		
- Special Triangle		
- Unit Circle		
- Secant, Cosecant, Cotangent		

Why is there 360° in a full rotation?
$360 \sim 365.25$.
360 has a lot of factors
\Rightarrow Arbitron

You think trigonometry is about triangles, but really it is about circles.
Definition: One radian is equal to the angle made when the arc of a circle is equal to the radius. In general it is the ratio of the arc to the radius.

$3.14 \ldots r=\pi r$

$$
\text { Angle (radians) }=\frac{\text { Arc Length }}{\text { radius }} \Rightarrow=\frac{a}{r}
$$

Where θ is the angle in radians. This may look like a formula, but it is the definition of the radian. This is similar to how π is defined as the ratio between the circumference and the diameter of a circle.

$$
\begin{aligned}
& \text { If we go all around the circle, then: } \\
& \qquad \begin{array}{r}
\operatorname{arc}=2 \pi r \quad \Rightarrow \theta=\frac{2 \pi r}{r}=2 \pi \quad \text { no units } \\
\text { rad. }=360^{\circ} \\
\pi=180^{\circ}
\end{array}
\end{aligned}
$$

Example:

$$
100^{\circ} \times \frac{2 \pi}{360^{\circ}}=\frac{5}{9} \pi=0.56 \pi
$$

$25 p^{\circ} \times \frac{2 \pi}{366}=\frac{25}{18} \pi=1.4 \pi$
${ }^{* *}$ Recall that positive angles move counter-clockwise around the circle, and negative angles move clockwise.
Definition: Angles are considered co-terminal if they have the same terminal arms.
Any multiple of 360° or 2π will wrap around back to the same terminal arm so we say the general form (which represents all the possible solutions) as

Examples:

When defining the angle around a circle, it is useful to think of that circle on a grid centered at the origin. Such a circle is defined by the equation:

$$
x^{2}+y^{2}=r^{2}
$$

Where r is the radius of the circle.

As the angle does not change as the radius changes the unit circle is the circle with radius 1 , centered about the origin.
$(\cos \theta, \sin \theta)$

$\frac{1}{\tan \theta}=\cot \theta=x / y$ (cotangent)

$$
\begin{array}{ll}
a^{2}+a^{2}=1 & \rightarrow a=\frac{1}{\sqrt{2}} \\
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}} & \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
\tan \frac{\pi}{4}=1 & \cot \frac{\pi}{4}=1 \\
\csc \frac{\pi}{4}=\sqrt{2} & \sec \frac{\pi}{4}=\sqrt{2}
\end{array}
$$

$$
\begin{aligned}
& 1 / \sin (\pi / 4) \rightarrow \sin (\pi / 4) \text { enter } x^{-1} \\
& 1=b^{2}+\frac{1}{4} \rightarrow b=\sqrt{3} / 2 \\
& \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \quad \cos \frac{\pi}{3}=\frac{1}{2} \quad(2) \\
& \tan \frac{\pi}{3}=\sqrt{3} \\
& \sin \frac{\pi}{6}=\frac{1}{2} \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \frac{\pi}{3}
\end{aligned}
$$

Unit 3: Trigonometry
$1-1-\sqrt{2}$

$$
1-2-\sqrt{3}
$$ $\frac{\pi}{6}, \frac{\pi}{3}$

Radian and Angles: March 3

Unit 3: Trigonometry
$\Rightarrow \cos \theta=x \quad \sin \theta=y$
Radian and Angles: March 3

Practice Problems: 4.1 page 175-176 \# 1-13
4.3 page 200 - 203 \# 1-6, $9,12-14,16,17$

