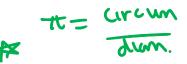
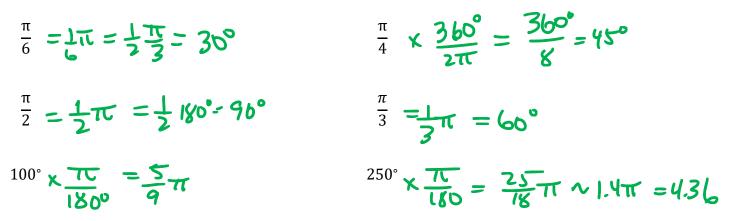

The Radian and Angles

KNOW	DO	UNDERSTAND		
How to recognize	Determine coterminal angles to a given angle.	Function Characteristics:		
angles in radians.	Determine the trig ratios of an angle.	Why the (x, y) coordinate on		
What quadrant an	How to use the unit circle and special triangles	the unit circle is $(\cos \theta, \sin \theta)$		
angle is in.				
Vocab & Notation				
Radian				
Co-terminal				
 Special Triangl 	e			
Unit Circle				
• Secant, Coseca	ant, Cotanget			
Why is there 360° in a	YOO grad full rotation?	- 360 has a lot of factors		
There	15 ~ 360 days in a year	L factors		
		2		
ou think trigonometry	is about triangles, but really it is about circles.			
Definition: One radian	is equal to the angle made when the arc of a circle i	s equal to the radius. In general.		

is the ratio of the arc to the radius.

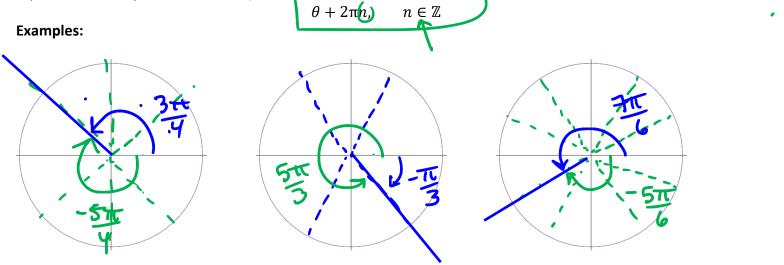

Angle (radians) =
$$\frac{\text{Arc Length}}{\text{radius}} \Rightarrow \theta = \frac{a}{r}$$

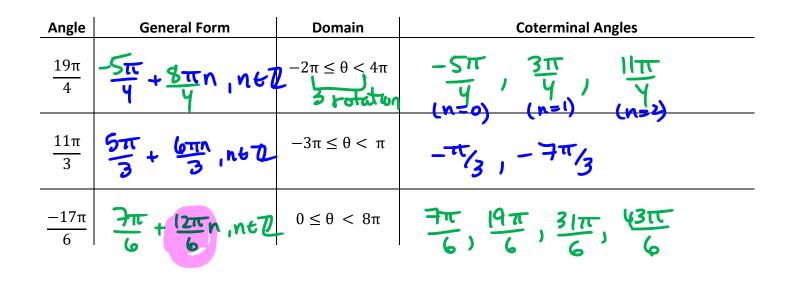
Where θ is the angle in radians. This may look like a formula, but it is the definition of the radian. This is similar to how π is defined as the ratio between the circumference and the diameter of a circle.


If we go all around the circle, then:

$$arc = circumferale = 2\pi r$$

$$\operatorname{ongle} = \frac{2\pi r}{r} = 2\pi r = 360^{\circ}$$


Unit 3: Trigonometry **Example**:



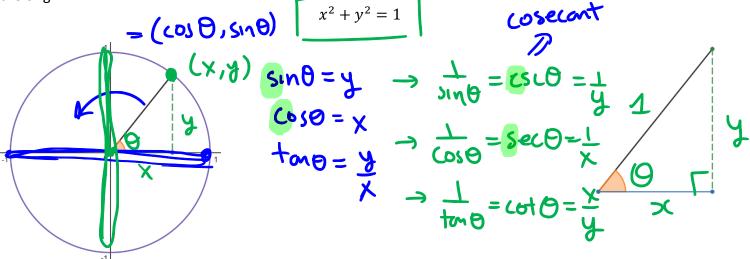
**Recall that positive angles move counter-clockwise around the circle, and negative angles move clockwise.

Definition: Angles are considered **co-terminal** if they have the same terminal arms.

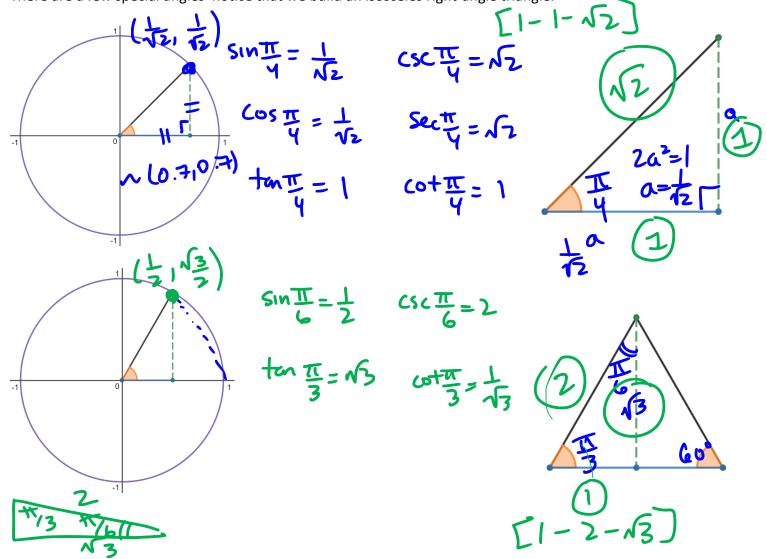
Any multiple of 360° or 2π will wrap around back to the same terminal arm so we say the **general form** (which represents all the possible solutions) as

soh cah TOG

Unit 3: Trigonometry

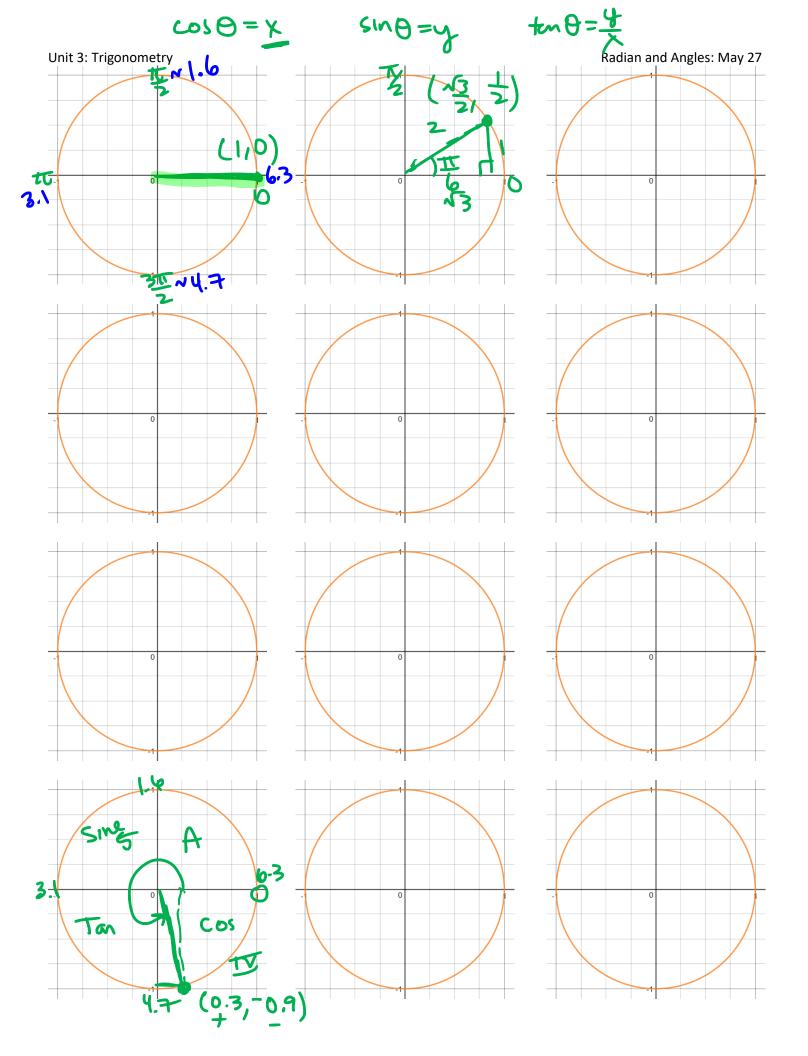

When defining the angle around a circle, it is useful to think of that circle on a grid centered at the origin. Such a circle is defined by the equation:

 $x^2 + y^2 = r^2 \qquad \text{Circle}$


Radian and Angles: May 27

Where r is the radius of the circle.

As the angle does not change as the radius changes the **unit circle** is the circle with radius 1, centered about the origin.


There are a few special angles notice that we build an isosceles right-angle triangle.

	Angle, θ	sin $ heta$	csc θ	cosθ	sec $ heta$	$\tan heta$	$\cot heta$
-	0	0	vert. asym	1	l	<u>0</u> =0	vert. asym N3
	$\frac{\pi}{6}$	4	2	1312	2/13	- 13	N3
-	$\frac{\pi}{3}$						
1	$\frac{\pi}{2}$						
	$\frac{3\pi}{4}$		See	morr	ing		
	π			hav t	es		
1	3.5						
	4						
	4.5						
1	5	-0.96	-1.04	0.28	3.52	-3,38	- 0.30
-	6						
-	9						

.

Practice Pro	blems : 4.1 page 175 – 176 # 1-13	
	4.3 page 200 – 203 # 1-6, 9, 12-14, 16, 17	

