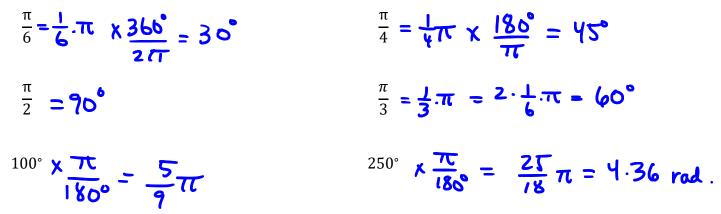

The Radian and Angles

KNOW	DO	UNDERSTAND		
How to recognize	Determine coterminal angles to a given angle.	Function Characteristics:		
angles in radians.	Determine the trig ratios of an angle.	Why the (x, y) coordinate on		
What quadrant an	How to use the unit circle and special triangles	the unit circle is $(\cos \theta, \sin \theta)$		
angle is in.				
Vocab & Notation				
Radian	to cosine law			
Co-terminal				
Special Triangle				
Unit Circle				
 Secant, Cosecant 	t, Cotanget			

You think trigonometry is about triangles, but really it is about circles.

Definition: One **radian** is equal to the angle made when the arc of a circle is equal to the radius. In general, it is the ratio of the arc to the radius.

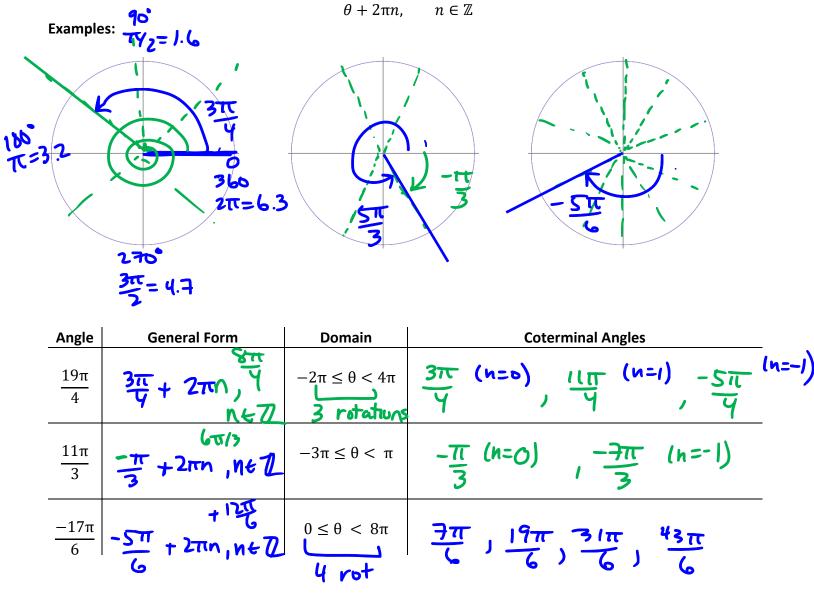
-> easy to divide. also ~ 360 days in a year


Angle (radians) =
$$\frac{\text{Arc Length}}{\text{radius}} \Rightarrow \theta = \frac{a}{r}$$

Where θ is the angle in radians. This may look like a formula, but it is the definition of the radian. This is similar to how π is defined as the ratio between the circumference and the diameter of a circle.

If we go all around the circle, then:

 \Rightarrow mple = $\frac{2\pi r}{r} = 2\pi = T$ $AVC = CIVCUM. = 2\pi r$ radius = r = 360° たミニ

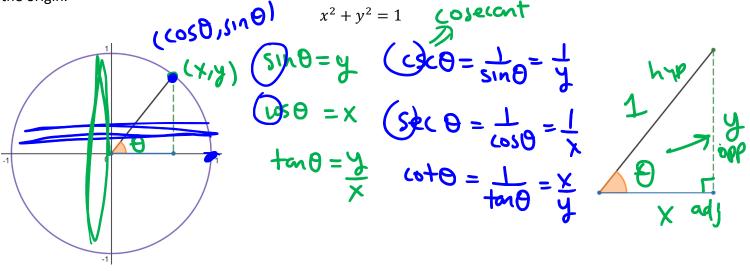

Unit 3: Trigonometry **Example**:

**Recall that positive angles move counter-clockwise around the circle, and negative angles move clockwise.

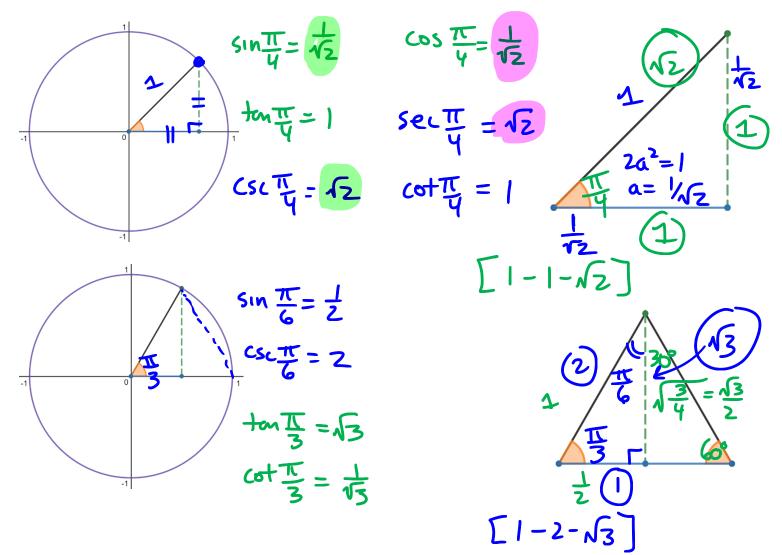
Definition: Angles are considered co-terminal if they have the same terminal arms.

Any multiple of 360° or 2π will wrap around back to the same terminal arm so we say the **general form** (which represents all the possible solutions) as

soh cah toa

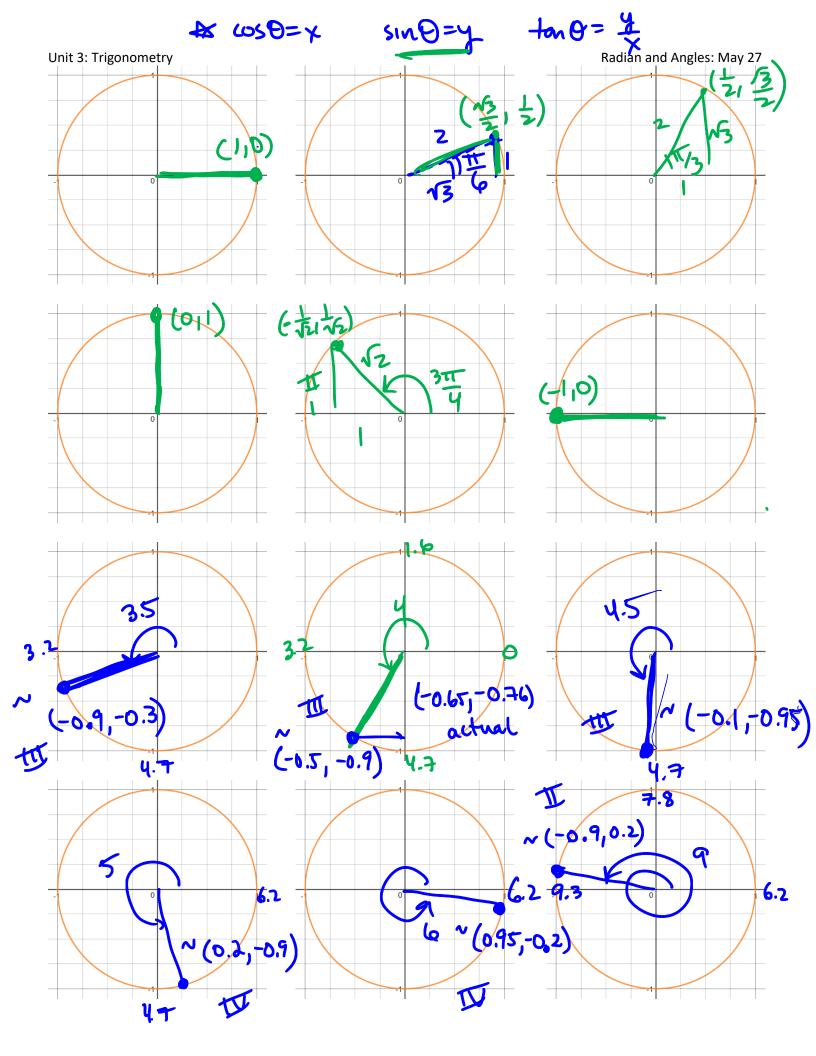

Unit 3: Trigonometry

When defining the angle around a circle, it is useful to think of that circle on a grid centered at the origin. Such a circle is defined by the equation: $x^2 + y^2 = r^2$


Radian and Angles: May 27

Where r is the radius of the circle.

As the angle does not change as the radius changes the unit circle is the circle with radius 1, centered about the origin.



There are a few special angles notice that we build an isosceles right-angle triangle.

Unit 3: Trigonometry

Angle, θ	sin θ	csc θ	$\cos heta$	sec $ heta$	$\tan heta$	$\cot heta$
0	0	vert. asym.	l	1	0	vert asym.
$\frac{\pi}{6}$	ЧГ	2	N3/2	2/13	143	13
$\frac{\pi}{3}$	1312	2123	12	2	. 13	1-53
$\frac{\pi}{2}$	1	1	Ø	vert	vert	0
$\frac{3\pi}{4}$	45	12	-1-	-12	- (- (
π	0	vert	-1	-1	Ο	vert asym
3.5	-0.35	-2.85	-0.94	-1.07	0.37	2.67
4	-0.76	- 32	-0.65	-1.53	J.] (q	0,86
4.5	-0.98	-1.02	-0.21	-4.74	4.64	0.22
5	-0.96	-(.04	0.28	3.52	-3.38	-0.30
6	-0.28	-3.58	0.96	1.04	-0.29	-3.44
9	0.41	2.43		-1.10	-0.45	-2.21
	$\begin{array}{c} 0 \\ \\ \hline \pi \\ \hline 6 \\ \hline \pi \\ \hline 3 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 4 \\ \hline 7 \\ \hline 3 \\ \hline 5 \\ \hline 5 \\ \hline 6 \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 Vert. asym. 1 $\frac{\pi}{6}$ $\frac{1}{2}$ 2 $\sqrt{3}/2$ $\frac{\pi}{3}$ $\sqrt{3}/2$ $\frac{1}{\sqrt{3}}$ $\frac{1}{2}$ $\frac{\pi}{2}$ 1 1 0 $\frac{3\pi}{4}$ $\frac{1}{\sqrt{2}}$ $\sqrt{2}$ $-\frac{1}{\sqrt{2}}$ π 0 vert -1 3.5 -0.35 -2.85 -0.944 4 -0.76 -1.32 -0.65 $^{4.5}$ -0.98 -1.02 -0.21 5 -0.96 -1.04 0.28 6 -0.28 -3.58 0.96	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

