KNOW	DO	UNDERSTAND
How to identify	Graph a rational function	Function Characteristics:
points of	accurately. Determine the equation	Horizontal asymptotes are not values removed
discontinuity, zeros,	to a rational function.	from the range, but trends as $x \to \infty$.
and horizontal	Identify the transformations that	Removeable discontinuities can be filled in.
asymptotes of a	took place when working with	Transformations:
rational function.	$\underline{mx+b}$	Can explain why horizontal and vertical
	<i>x</i> - <i>a</i>	stretches are equivalent in $\frac{1}{x}$
Vocab & Notation		

Rational Functions

- Discontinuity
- Removeable discontinuity

We want to consider the functions of the form:

$$\frac{b(x)}{q(x)} = \frac{ax^n + \cdots}{bx^m + \cdots}$$

Major characteristics: **revtical osymptote** (x = 0) **horizontal** $(x) = \frac{1}{x}$ **horizontal** $(x) = \frac{1}{x}$ To get to that point, let's consider the basic function: $f(x) = \frac{1}{x}$ through a shift the asymptotes move พเป $f(x-c) + d = \frac{1}{x-r} + d$ **Example**: Given the function $p(x) = \frac{2x}{x+2}$, identify the transformations that occurred from $\frac{1}{x} = f(x)$ $p(x) = \lambda - \frac{\psi}{x+2} = -\psi \cdot \frac{1}{x+2} + 2$ X+2 ZX (2*+4) $= - 4 \cdot f(x+2) + 2$ expanded by 4, Rox, left 2, up 2 =) vertically

Unit 2: Polynomials

When we look at the rational function

$$\frac{p(x)}{q(x)} = \frac{ax^n + \dots}{bx^m + \dots} = A \frac{(x - \alpha) \cdots (x - \beta)}{(x - \varphi) \cdots (x - \omega)}$$

We are going to use the factored form to graph it when it goes beyond a degree 1 polynomial over a degree 1 polynomial.

9.2 page 452 – 456 # 3-11, 16, 18-23, C2