Rational Functions

KNOW	DO	UNDERSTAND		
How to identify				
points of				
discontinuity, zeros,				
and horizontal				
asymptotes of a				
rational function.			\quad	Graph a rational function
:---				
accurately. Determine the equation				
to a rational function.				
Identify the transformations that				
took place when working with				
$\frac{m x+b}{x-a}$	\quad	Function Characteristics:		
:---				
from the range, but trends as $x \rightarrow \infty$.				
Removable discontinuities can be filled in.				
Transformations:				
Can explain why horizontal and vertical				
stretches are equivalent in $\frac{1}{x}$				

We want to consider the functions of the form:

$$
\frac{p(x)}{q(x)}=\frac{a x^{n}+\cdots}{b x^{m}+\cdots}
$$

To get to that point, let's consider the basic function: $f(x)=\frac{1}{x}$

Major characteristics:
revtical asymptote horizontal 4
If we were to transform it:

Function Characteristics:
Horizontal asymptotes are not values removed from the range, but trends as $x \rightarrow \infty$.
Removeable discontinuities can be filled in.
Transformations:
Can explain why horizontal and vertical stretches are equivalent in $\frac{1}{x}$

Vocab \& Notation

- Discontinuity
- Removeable discontinuity
through a shift the asymptotes will move

$$
f(x-c)+d=\frac{1}{x-c}+d
$$

Example: Given the function $p(x)=\frac{2 x}{x+2}$, identify the transformations that occurred f om $\frac{1}{x}=f(x)$
2

$$
\begin{aligned}
x+2 \frac{2}{2 x} & p(x)
\end{aligned}=2-\frac{4}{x+2}=-4 \cdot \frac{1}{x+2}+2
$$

When we look at the rational function

$$
\frac{p(x)}{q(x)}=\frac{a x^{n}+\cdots}{b x^{m}+\cdots}=A \frac{(x-\alpha) \cdots(x-\beta)}{(x-\varphi) \cdots(x-\omega)}
$$

We are going to use the factored form to graph it when it goes beyond a degree 1 polynomial over a degree 1 polynomial.

1. Discontinuities
a. Vertical Asymptotes:

$$
y=\frac{3}{x(x+4)^{2}(x-3)} \sim \frac{3}{x^{4}}
$$

b. Removable Discontinuities (Holes):

$$
y=\frac{-4(x-3)}{(x-2)(x-3)(x+1)^{2}}, x \neq 3 \sim-\frac{1}{x^{3}}
$$

2. Zeros

$$
y=\frac{-\chi(x+2)^{3}(x-3)^{2}}{\not x(x+6)^{2}(x-1)^{5}}, x \neq 0 \approx \frac{-x^{5}}{x^{7}}=\frac{-1}{x^{2}}
$$

 vert sym:

m. $)^{-} \quad \frac{-1}{x^{2}} \rightarrow 0$ holes: $x \neq 0$
zeros: $x=-2 \quad x=3$
m. 2

$$
x \gg 0 \rightarrow y<0
$$

3. Horizontal asymptotes:
vert sym

$$
y=\frac{-(x+3)(x-1)^{2}}{(x+3)(x+2)} \quad x=-2
$$

note
hole $x \neq-3$
zero
zero

Hor li. asymptote $y=3$

Practice: Build an equation for the following graph and sketch the function

need so passed

$$
\begin{aligned}
& (x+2)(x-3)^{2} \\
& (x+2)(x+1)^{3}(x-2) \\
& \text { need so H.A }=0
\end{aligned} \quad \frac{2^{2}}{9} \text { thru } y=-\frac{2(x-\beta)(x-2)(x+1)}{(x-1)^{2}(x-3)} \quad x \neq 3
$$

Practice Problems: 9.1 page 442 - 445 \# 1-9, 11, 12, 20-22
9.2 page $452-456$ \# 3-11, 16, 18-23, C2

