Rational Models Practice

Goal: Be able to model rational functions in general cases and interpret the model in a meaningful way.
Scenario 1 (with time):
A. In situation A, I imagine two taps that work together to fill a bathtub that can hold 100L of water. Tap B can fill up 6 L two times faster than $\operatorname{tap} A$. A person turns on $\operatorname{tap} B$ first. After 3 minutes she then turns on $\operatorname{tap} A$.

What does the efficiency of $\operatorname{tap} B$ need to be to fill up the 100 L bathtub in the next 3 minutes?
Tap A can fill up $6 L$ in t minutes
\rightarrow Tap B can fill up $6 L$ in $2 t$ minutes.

$=\frac{t}{9}\left(100-\frac{9}{t}\right)$
$3=\frac{160}{9} t-1$
$\frac{100}{9} t=4$
$t=0.36$ minutes
\therefore efficiency of tap $B=\frac{6}{2 \times 0.36}=\frac{25}{3}=8.33 \mathrm{~L} /$ minutes
B. In situation B, l imagine two types of plants are in a room, 20 plants of type A and 40 plants of type B. A plant A can produce 1 L of oxygen 30 minutes faster than a plant B.

After 4 hours, the total amount of oxygen produced working together is equal to the oxygen produced with 50 plants of type A working alone, what is the efficiency of oxygen production for plants A and B at that time?
A plant B an produce $I L$ of oxygen in t minutes
A plant A can produce $I L$ of oxygen in $(t-30)$ minutes.
\Rightarrow efficiency of plant $B=\frac{1}{t}$
efficiency of plant $A=\frac{1}{t-30}$
time $240\left(\frac{20}{t-30}+\frac{\sqrt{20}}{t}\right)=240 \cdot \frac{\sqrt{50}}{t-30}$

$$
\begin{aligned}
20 t+40(t-30) & =50 t \\
20 t+40 t-1200 & =50 t \\
60 t-1200 & =50 t \\
t & =\frac{1200}{10} \\
t & =120 \text { minutes }
\end{aligned}
$$

$4 \mathrm{hs}=4 \times 60=240 \mathrm{mins}$

$\begin{aligned} 20 t+40(t-30) & =50 t \\ 20 t+40 t-1200 & =50 t \\ 60 t-1200 & =50 t \\ t & =\frac{1200}{10} \\ t & =120 \text { minutes }\end{aligned}$

```
* Questions to ask yourself:
1. Wily the time, 4 hrs does not matter here?
2. What will happen to \(t\) if the in of plant \(A\) working
```

Ans: https://www.desmos.com/calculator/4km8ovusdb
efficiency of plant $B=\frac{1}{120}=0.0083 \mathrm{~L} / \mathrm{min}$
efficiency of plant $A=\frac{1}{120-30}=0.011 \mathrm{~L} / \mathrm{min}$

Scenario 2 (without time):
C. In situation C, I imagine two types of mobile plans are available. Bell costs 0.5 dollars per call and Tellus costs 0.8 dollars per call. We make 9 calls with Bell and 14 calls with Tellus.

What the overall cost per call is?
$C=\frac{9 \times 0.5+14 \times 0.8}{9+14}=0.683 \$ / \mathrm{cll}$
D. In situation D, I imagine, in a local household, heater A costs $\$ 5.00$ to raise the room temperature by $10^{\circ} \mathrm{C}$. A more efficient heater, heater B, costs $\$ 3.00$ to raise the same room by $10^{\circ} \mathrm{C}$.

When 1 heater of type A, and several heaters of type B works separately in rooms of the same size, how many B heater are needed to control the price at $\$ 3.50$ per $10^{\circ} \mathrm{C}$?

Let $n=\#$ of heater B.
$\frac{1 \cdot 5+n \cdot 3}{1+n}=3.5$

$5+3 n=3.5+3.5 n$
$0.5 n=1.5$
$n=3$
$\therefore 3 B$ heaters are needed

