Riemann Sum Extra Practice

We want to write the following areas as limits of Riemann Sums. For each of the following consider $y=f(x)$ on the interval $[a, b]$

1. $f(x)=x^{2}$ on $[0,4]$
2. $f(x)=\sqrt{x}$ on $[1,3]$
3. $f(x)=e^{-x}$ on $[-1,4]$
4. $f(x)=\frac{4}{(x+1)^{2}}$ on $[2,9]$
5. $f(x)=\ln \left(x^{3}+9\right)$ on $[-2,1]$
6. $f(x)$ on $[a, b]$

Solutions:

1.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{4 k}{n}\right)^{2} \cdot \frac{4}{n}
$$

2.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2}{n} \cdot \sqrt{1+\frac{2 k}{n}}
$$

3.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{5}{n} \cdot e^{-\left(-1+\frac{5 k}{n}\right)}
$$

4.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{7}{n} \cdot \frac{4}{\left(3+\frac{7 k}{n}\right)^{2}}
$$

5.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{3}{n} \cdot \ln \left(\left(-2+\frac{3 k}{n}\right)^{3}+9\right)
$$

6.

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(a+\frac{(b-a) k}{n}\right) \cdot \frac{(b-a)}{n}
$$

