Asymptotes: Horizontal and Otherwise

Goal:

- Can identify the vertical, horizontal, and slant asymptotes of a function
- Understand that asymptotes are the description of regular behaviour as something becomes infinite
- Gaining comfort to graph key characteristics of functions.

Terminology:

- Slant Asymptote
- Infinite Limit

Review: From grade 12 what is a horizontal and vertical asymptote?

Calculus: We want to ammend the above description to have a calculus perspective.

When we approach infinity with polynomials, we only care about relative growth. That is x^{2} grows faster than x, and x^{3} grows faster still.

$$
\mathcal{O}\left(x^{n}\right)>\mathcal{O}\left(x^{n-1}\right)
$$

So for large values of x, only the leading term really maters
Example:

$$
\lim _{x \rightarrow \infty} \frac{6 x^{4}+6 x^{2}-100}{2 x^{4}-49 x^{3}+10000}
$$

Practice:

$$
\lim _{x \rightarrow-\infty} \frac{4 x^{5}-17 x^{3}+400 x-20^{20}}{0.001 x^{6}-x^{5}+200 x^{2}}
$$

But what happens when the degree of the numerator is greater than the degree of the denominator? Example:

$$
\lim _{x \rightarrow \infty} \frac{2 x^{3}-x^{2}+400 x}{x^{2}+x+1}
$$

Practice:

$$
\lim _{x \rightarrow \infty} \frac{7 x^{5}-2 x^{4}-10 x^{2}+1}{x^{4}+1}
$$

Practice Problems: 5.1: \# Anything you feel is valuable (This section is Precalc 12 and early limit review)
5.2: \# 1-3 (do what you need), 4, 6, 11
5.6: \#1-3

Desmos Asymptote Activity

I want you to find the equation to the horizontal and slant asymptotes by using Desmos to graph and compare the rational function to the equation to the asymptote as I showed in class.

Go to:

desmos.com/calculator/rhnw0r4upz

Find the equation to the horizontal/slant asymptote and graph the asymptote along with the graph.
1.

2.

3.

4.

$$
\frac{20 x^{3}-6 x^{2}+15 x}{4 x^{3}-10 x^{2}+1}
$$

5.

$$
\frac{3 x^{4}+10 x^{2}-3}{x^{3}+7 x-16}
$$

6.

$$
\frac{-x^{5}-4 x^{3}+20 x}{2 x^{4}+5 x^{2}-10}
$$

7.

$$
\frac{x^{5}+7 x^{4}-20 x^{3}+30}{x^{4}-10 x^{2}+300}
$$

8.

$$
\frac{2 x^{4}-10 x^{3}+30 x^{2}-100}{x^{3}+29 x}
$$

9.

10.

$$
\frac{-x^{3}+3 x-10}{3 x^{2}+18 x-20}
$$

11.

$$
\frac{0.1 x^{4}-5 x^{3}+8 x^{2}-10 x+20}{x^{2}+100}
$$

12.

In general, what strategies are you using and what patterns are you noticing? Be as specific as possible.

