Curve Sketching

Goal:

- Can graph a polynomial accurately to include local extrema, inflection points, correct concavity and slope and correct y-intercept and zeros.
Terminology:
- None

Reminder:

- Test on Wednesday February $25^{\text {th }}$

Find the local extrema, inflection points and zeros of the following polynomial.

$$
f(x)=\frac{x^{4}}{4}-x^{3}+3
$$

Extrema at $x=\cdots$	Inflection points at $x=\cdots$	Zeros at $x=\cdots$

Extrema at $x=\cdots$	Inflection points at $x=\cdots$	Zeros at $x=\cdots$

Putting it all together we can sketch a very good looking polynomial.

Practice Problems: 5.5: \# 2, 4, 6-9, 12 Sketch the graphs with correct intercepts, asymptotes, local extrema and inflection points.

In Class Evidence

Sketch the graphs with correct intercepts, asymptotes, local extrema and inflection points.
2.

$$
y=\left(x^{2}-1\right)^{3}
$$

4.

$$
y=\frac{x^{2}}{x^{2}+3}
$$

