Sequences and Series

KNOW Sequences are functioning whose domain is discrete. Can identify if a sequence is geometric.	DO Can use sigma notation to describe series. Can build the equation for a geometric sequence. Can determine the sum of a geometric series.	UNDERSTAND None yet
Vocab \& Notation - Sequence, $\left(a_{n}\right)_{n \in \mathbb{N}}$ - Index - Recursion	- Series - Sigma Notation, $\sum k$ - Geometric - Common Ratio	

Definition: A sequence is an ordered collection of objects. Like a set, but order matters. It is denoted as

$$
\left(a_{n}\right)_{n \in \mathbb{N}}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

The position of an element of a sequence is called the index, and there is a relationship between the index and the term.

$$
\begin{aligned}
& s: \mathbb{N} \rightarrow \mathbb{R} \\
& s: n \mapsto a_{n}
\end{aligned}
$$

Examples:

$(2,4,6,8, \ldots)$		
$(2,4,8,16, \ldots)$		
$(2,3,5,7,11, \ldots)$		A0005843
$(2,3,5,8,13, \ldots)$		A0000040

There is an online encyclopedia of integer sequences called OEIS and found at "oeis.org". The sequence number is shown on the side.

Oftentimes it is helpful to define a sequence starting with index 0 instead of 1 . Really any number can be used to start the index but 0 and 1 are the main choices.

Definition: A geometric sequence is a sequence generated by multiplying the previous term by a fixed value.

$$
a_{k+1}=a_{k} \cdot r
$$

Definition: The common ratio is the ratio of consecutive terms in a geometric sequence.

$$
\frac{a_{k+1}}{a_{k}}=r
$$

Let's look and see how a geometric sequence is built by letting $a_{1}=A$

Example: Determine sequences of the form $\left(a_{k}\right)_{k=1}^{\infty}$ and $\left(b_{k}\right)_{k=0}^{\infty}$ for the following patterns:

$$
(2,6,18, \cdots)
$$

$$
(100,-50,25, \cdots)
$$

$$
\left(\frac{8}{9}, \frac{2}{9} \cdot \frac{1}{18}, \cdots\right)
$$

$$
\left(-9,-25,-\frac{625}{9}, \cdots\right)
$$

Definition: A series is a sum of a sequence, either finite or infinite.
Example: Consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ where $a_{k}=4 \cdot \frac{(-1)^{k+1}}{2 k-1}$, then we have that the sequence is:

And we can add the first 5 terms or add all of them as

$$
\begin{gathered}
S_{5}=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\frac{4}{9}=\frac{1052}{315}=3.3396 \ldots \\
S_{\infty}=4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\cdots=
\end{gathered}
$$

We'll get to the last sum in a second, but there is a better way to express the summation using sigma notation

$$
S_{n}=\sum_{k=1}^{n} a_{k}
$$

So the sums we were looking at can be written as

$$
S_{5}=\sum_{k=1}^{5} \frac{4 \cdot(-1)^{k+1}}{2 k-1} \quad S=\sum_{k=1}^{\infty} \frac{4 \cdot(-1)^{k+1}}{2 k-1}
$$

Typing this into Desmos we get the sigma notation by typing "sum".

Practice: Write out the terms of the following sums and compute the sum

$$
\sum_{k=1}^{5} 3 k \quad \sum_{n=1}^{4} \frac{3 n+2}{n+1} \quad \sum_{i=0}^{3} 2^{i}
$$

Practice: Write the following series in sigma notation:

$$
8+24+72+216+648
$$

$$
\frac{2}{9}-\frac{2}{3}+2-6+18-54
$$

Now we would like to consider the geometric series, that is

$$
S_{n}=\sum_{k=1}^{n} a_{1} \cdot r^{k-1}
$$

Oftentimes it is helpful to try and add or subtract copies of the summation to reduce it to something simpler.

Example: Determine the following sums

$$
\sum_{k=1}^{10} 4 \cdot 3^{k-1}
$$

$$
\sum_{k=0}^{5} 3 \cdot\left(\frac{1}{2}\right)^{k}
$$

Practice: Determine the following sums

$$
\sum_{k=1}^{7} 8 \cdot\left(-\frac{2}{3}\right)^{k-1}
$$

$$
\sum_{k=0}^{6}\left(\frac{9}{4}\right)^{k}
$$

Since we know the finite sum, we can consider what S_{∞} would be:

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

Example: Determine the following sums

$$
\sum_{k=1}^{\infty} 10 \cdot\left(-\frac{2}{5}\right)^{k-1}
$$

$$
\sum_{k=0}^{\infty} 7 \cdot\left(-\frac{3}{4}\right)^{k}
$$

$$
\sum_{k=2}^{\infty} 100 \cdot\left(\frac{1}{2}\right)^{k}
$$

$$
\sum_{k=0}^{\infty} 12 \cdot(1.01)^{k}
$$

Practice Problems: Handout sections I, II, III, V(a,c,d) Sigma Notation Module:
@ blogs.ubc.ca/infiniteseriesmodule/units/unit-1/sigma-notation/
Ryerson pdf: 1.3 \# 1-7, 23
1.4 \# 1-8, 16-19
1.5 \# 1-7, 20

