Sequences and Series

KNOW	DO		UNDERSTAND
Sequences are functioning whose	Can use sigma notation to describe series. Can		None yet
domain is discrete. Can identify if a	build the equation	on for a geometric sequence.	
sequence is geometric.	Can determine t	he sum of a geometric series.	
Vocab & Notation			
• Sequence, $(a_n)_{n\in\mathbb{N}}$		Series	
• Index		• Sigma Notation, $\sum k$	
 Recursion 		Geometric	
		 Common Ratio 	

Definition: A **sequence** is an ordered collection of objects. Like a set, but order matters. It is denoted as $(a_n)_{n\in\mathbb{N}}=(a_1,a_2,a_3,...)$

The position of an element of a sequence is called the **index**, and there is a relationship between the index and the **term**.

$$s: \mathbb{N} \to \mathbb{R}$$
$$s: n \mapsto a_n$$

Examples:

(2, 4, 6, 8,)	
	A005843
(2, 4, 8, 16,)	
	A000079
(2, 3, 5, 7, 11,)	
	A000040
(2, 3, 5, 8, 13,)	
	A000045

There is an online encyclopedia of integer sequences called OEIS and found at "oeis.org". The sequence number is shown on the side.

Oftentimes it is helpful to define a sequence starting with index 0 instead of 1. Really any number can be used to start the index but 0 and 1 are the main choices.

Definition: A **geometric sequence** is a sequence generated by multiplying the previous term by a fixed value.

$$a_{k+1} = a_k \cdot r$$

Definition: The **common ratio** is the ratio of consecutive terms in a geometric sequence.

$$\frac{a_{k+1}}{a_k} = r$$

Let's look and see how a geometric sequence is built by letting $a_1=A$

Example: Determine sequences of the form $(a_k)_{k=1}^{\infty}$ and $(b_k)_{k=0}^{\infty}$ for the following patterns:

$$(2,6,18,\cdots)$$
 $(100,-50,25,\cdots)$

$$\left(\frac{8}{9}, \frac{2}{9}, \frac{1}{18}, \cdots\right)$$
 $\left(-9, -25, -\frac{625}{9}, \cdots\right)$

Definition: A **series** is a sum of a sequence, either finite or infinite.

Example: Consider the sequence $(a_n)_{n\in\mathbb{N}}$ where $a_k=4\cdot\frac{(-1)^{k+1}}{2k-1}$, then we have that the sequence is:

And we can add the first 5 terms or add all of them as

$$S_5 = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} = \frac{1052}{315} = 3.3396 \dots$$

$$S_{\infty} = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \dots =$$

We'll get to the last sum in a second, but there is a better way to express the summation using sigma notation

$$S_n = \sum_{k=1}^n a_k$$

So the sums we were looking at can be written as

$$S_5 = \sum_{k=1}^{5} \frac{4 \cdot (-1)^{k+1}}{2k-1}$$

$$S = \sum_{k=1}^{\infty} \frac{4 \cdot (-1)^{k+1}}{2k - 1}$$

Typing this into Desmos we get the sigma notation by typing "sum".

Practice: Write out the terms of the following sums and compute the sum

$$\sum_{k=1}^{5} 3k$$

$$\sum_{n=1}^{4} \frac{3n+2}{n+1}$$

$$\sum_{i=0}^{3} 2^{i}$$

Practice: Write the following series in sigma notation:

$$8 + 24 + 72 + 216 + 648$$

$$\frac{2}{9} - \frac{2}{3} + 2 - 6 + 18 - 54$$

Now we would like to consider the geometric series, that is

$$S_n = \sum_{k=1}^n a_1 \cdot r^{k-1}$$

Oftentimes it is helpful to try and add or subtract copies of the summation to reduce it to something simpler.

Example: Determine the following sums

$$\sum_{k=1}^{10} 4 \cdot 3^{k-1}$$

$$\sum_{k=0}^{5} 3 \cdot \left(\frac{1}{2}\right)^{k}$$

Practice: Determine the following sums

$$\sum_{k=1}^{7} 8 \cdot \left(-\frac{2}{3}\right)^{k-1}$$

$$\sum_{k=0}^{6} \left(\frac{9}{4}\right)^{k}$$

Since we know the finite sum, we can consider what \mathcal{S}_{∞} would be:

$$S_n = \frac{a_1(1-r^n)}{1-r}$$

Example: Determine the following sums

$$\sum_{k=1}^{\infty} 10 \cdot \left(-\frac{2}{5}\right)^{k-1}$$

$$\sum_{k=0}^{\infty} 7 \cdot \left(-\frac{3}{4}\right)^{k}$$

$$\sum_{k=2}^{\infty} 100 \cdot \left(\frac{1}{2}\right)^k$$

$$\sum_{k=0}^{\infty} 12 \cdot (1.01)^k$$

Practice Problems: Handout sections I, II, III, V(a,c,d)

Sigma Notation Module:

@ blogs.ubc.ca/infiniteseriesmodule/units/unit-1/sigma-notation/

Ryerson pdf: 1.3 # 1-7, 23 1.4 # 1-8, 16-19

1.5 # 1-7, 20