AP Calculus AB

1. If f is the function defined by $f(x) = \frac{\frac{1}{x}-1}{x-1}$, then $\lim_{x\to 1} f(x)$ is equivalent to which of the following?

- $\bigcirc \lim_{x \to 1} \left(\frac{x-1}{x-1} \right)$
- $\bigcirc \hspace{-0.5cm} \begin{array}{c} \lim \limits_{x \to 1} \left(\frac{1}{x} 1\right) \\ \lim \limits_{x \to 1} (x 1) \end{array}$
- 2. Let f and g be functions such that $\lim_{x\to 4}g(x)=2$ and $\lim_{x\to 4}\frac{f(x)}{g(x)}=\pi$. What is $\lim_{x\to 4}f(x)$?
- \bigcirc B) $2+\pi$

(c) 2π

- D The limit cannot be determined from the information given.
- $f(x) = \left\{ egin{array}{ll} rac{x}{|x|} & ext{for } x
 eq 0 \ 0 & ext{for } x = 0 \end{array}
 ight.$

If f is the function defined above, then $\lim_{x \to 0} f(x)$ is

- \bigcirc -1
- (B) (
- (c) 1
- (D) nonexistent

- 4. The function f is defined for all x in the interval 4 < x < 6. Which of the following statements, if true, implies that $\lim_{x \to 5} f(x) = 17$?
- (A) There exists a function g with $f(x) \leq g(x)$ for 4 < x < 6, and $\lim_{x \to 5} g(x) = 17$.
- (B) There exists a function g with $g(x) \leq f(x)$ for 4 < x < 6, and $\lim_{x \to 5} g(x) = 17$.
- There exist functions g and h with $f(x) \leq g(x) \leq h(x)$ for 4 < x < 6, and $\lim_{x \to 5} g(x) = \lim_{x \to 5} h(x) = 17$.
- There exist functions g and h with $g(x) \leq f(x) \leq h(x)$ for 4 < x < 6, and $\lim_{x \to 5} g(x) = \lim_{x \to 5} h(x) = 17$.

5. The function g is given by $g(x) = \frac{7x-26}{x-5}$. The function h is given by $h(x) = \frac{3x+14}{2x+1}$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for 0 < x < 5, what is $\lim_{x \to 2} f(x)$?

- (B) A

- (c) 7
- (D) The limit cannot be determined from the information given.
- 6. Let f be a function of x. The value of $\lim_{x\to a} f(x)$ can be found using the squeeze theorem with the functions g and h. Which of the following could be graphs of f, g, and h?

AP Calculus AB

7.	\boldsymbol{x}	1.9	1.95	1.99	1.999	2.001	2.01	2.05	2.1
	f(x)	4.204	3.671	3.147	3.015	2.985	2.847	2.160	1.113

The table above gives selected values for a function f. Based on the data in the table, which of the following could not be the graph of f on the interval $1.9 \le x \le 2.1$?

AP° CollegeBoard

Unit 1 Progress Check: MCQ Part B

8. $f(x) = \begin{cases} -x^2 + 3x + 3 & \text{for} \quad x < 2 \\ 6 & \text{for} \quad x = 2 \\ 8 - \frac{3}{2}x & \text{for} \quad x > 2 \end{cases}$

Let f be the piecewise function defined above. Also shown is a portion of the graph of f. What is the value of $\lim_{x\to 2} f(f(x))$?

- \bigcirc -15
- \bigcirc -7
- (c) -1
- \bigcirc $\frac{1}{2}$

9.	\boldsymbol{x}	2.9	2.95	2.98	2.999	3.001	3.02	3.05	3.1
	f(x)	1.7	1.65	1.62	1.601	1.603	1.66	1.747	1.89

The table above gives selected values for a function f. Also shown is a portion of the graph of f. The graph consists of a line segment for x < 3 and part of a parabola for x > 3. What is $\lim_{x \to 3} f(x)$?

(A) 1.6

- (в) 1.602
- © 2
- (D) The limit does not exist.

AP Calculus AB

10. $f(x)=\left\{egin{array}{ll} rac{2x^2-3x-2}{x-2} & ext{if} \ x
eq 2 \ 7 & ext{if} \ x=2 \end{array}
ight.$

The function f is defined above. Which of the following statements is true?

- igcap A f is continuous at x=2.
- $oxed{f B}$ f has a removable discontinuity at x=2.

- \bigcirc f has a jump discontinuity at x=2.
- $oxedsymbol{ox{oxed}}}}}} f$ has a discontinuity due to a vertical asymptote at x=2.
- **11.** The function f has a jump discontinuity at x=3. Which of the following could be the graph of f?

12.

Graph of f

The graph of a function f is shown in the figure above. At what value of x does f have a removable discontinuity?

$$(A) x = 1$$

$$\bigcirc$$
 B $x=3$

$$\bigcirc$$
 $x=4$

$$\bigcirc$$
 $x=5$

13. If $\lim_{x\to 6} f(x)$ exists with $\lim_{x\to 6} f(x) < 5$ and f(6) = 10, which of the following statements must be false?

- $\bigcap_{x\rightarrow 6^{-}}f\left(x\right) =0$
- $igotimes_{x o 6^+} f(x) < 5$
- $\bigcirc \lim_{x \rightarrow 6^{-}} f\left(x\right) = \lim_{x \rightarrow 6^{+}} f\left(x\right)$
- \bigcirc f is continuous at x=6.

14. $f(x) = \left\{ egin{array}{ll} 2^x & ext{for } 0 < x < 1 \ rac{1}{2} x^2 - x + rac{5}{2} & ext{for } 1 < x < 2 \end{array}
ight.$

Let f be the function defined above. Which of the following statements is true?

- $ig(\mathbf{A} ig) f$ is continuous at x = 1.
- $oxed{\mathsf{B}} f$ is not continuous at x=1 because f(1) does not exist.

- \bigcirc f is not continuous at x=1 because $\lim_{x o 1^-} f(x)
 eq \lim_{x o 1^+} f(x)$.
- (D) f is not continuous at x=1 because $\lim_{x o 1} f(x)$ does not exist.
- **15.** Which of the following functions is continuous at x = 3?

AP Calculus AB Scoring Guide

Unit 1 Progress Check: MCQ Part B

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} A \end{pmatrix} f(x) = \left\{ egin{aligned} rac{x^2 + x - 12}{x - 3} & ext{for} & x
eq 3 \end{aligned}
ight. \end{aligned}$$

$$\left(\begin{array}{c} \texttt{B} \end{array} \right) \, g \left(x \right) = \left\{ \begin{array}{ll} 4x - 7 & \text{for } x < 3 \\ \text{undefined} & \text{for } x = 3 \\ x + 2 & \text{for } x > 3 \end{array} \right.$$

