## Unit 1 Progress Check: MCQ Part B

1. If $f$ is the function defined by $f(x)=\frac{\frac{1}{x}-1}{x-1}$, then $\lim _{x \rightarrow 1} f(x)$ is equivalent to which of the following?
(A) $\lim _{x \rightarrow 1}\left(-\frac{1}{x}\right)$
(B) $\lim _{x \rightarrow 1}\left(\frac{1}{x^{2}}-1\right)$
(C) $\lim _{x \rightarrow 1}\left(\frac{x-1}{x-1}\right)$
(D) $\frac{\lim _{x \rightarrow 1}\left(\frac{1}{x}-1\right)}{\lim _{x \rightarrow 1}(x-1)}$
2. Let $f$ and $g$ be functions such that $\lim _{x \rightarrow 4} g(x)=2$ and $\lim _{x \rightarrow 4} \frac{f(x)}{g(x)}=\pi$. What is $\lim _{x \rightarrow 4} f(x)$ ?
(A) $\frac{\pi}{2}$
(B) $2+\pi$
(C) $2 \pi$
(D) The limit cannot be determined from the information given.
3. 

$f(x)= \begin{cases}\frac{x}{|x|} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}$
If $f$ is the function defined above, then $\lim _{x \rightarrow 0} f(x)$ is

## Unit 1 Progress Check: MCQ Part B

(A) -1
(B) 0
(C) 1
(D) nonexistent
4. The function $f$ is defined for all $x$ in the interval $4<x<6$. Which of the following statements, if true, implies that $\lim _{x \rightarrow 5} f(x)=17$ ?
(A) There exists a function $g$ with $f(x) \leq g(x)$ for $4<x<6$, and $\lim _{x \rightarrow 5} g(x)=17$.
(B) There exists a function $g$ with $g(x) \leq f(x)$ for $4<x<6$, and $\lim _{x \rightarrow 5} g(x)=17$.

There exist functions $g$ and $h$ with $f(x) \leq g(x) \leq h(x)$ for $4<x<6$, and
(C) $\lim _{x \rightarrow 5} g(x)=\lim _{x \rightarrow 5} h(x)=17$.

There exist functions $g$ and $h$ with $g(x) \leq f(x) \leq h(x)$ for $4<x<6$, and
(D) $\lim _{x \rightarrow 5} g(x)=\lim _{x \rightarrow 5} h(x)=17$.
5. The function $g$ is given by $g(x)=\frac{7 x-26}{x-5}$. The function $h$ is given by $h(x)=\frac{3 x+14}{2 x+1}$. If $f$ is a function that satisfies $g(x) \leq f(x) \leq h(x)$ for $0<x<5$, what is $\lim _{x \rightarrow 2} f(x)$ ?

## Unit 1 Progress Check: MCQ Part B

(A) $\frac{3}{2}$
(B) 4
(C) 7
(D) The limit cannot be determined from the information given.
6. Let $f$ be a function of $x$. The value of $\lim _{x \rightarrow a} f(x)$ can be found using the squeeze theorem with the functions $g$ and $h$. Which of the following could be graphs of $f, g$, and $h$ ?


Unit 1 Progress Check: MCQ Part B
(B)

(c)


## Unit 1 Progress Check: MCQ Part B


7.

| $x$ | 1.9 | 1.95 | 1.99 | 1.999 | 2.001 | 2.01 | 2.05 | 2.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 4.204 | 3.671 | 3.147 | 3.015 | 2.985 | 2.847 | 2.160 | 1.113 |

The table above gives selected values for a function $f$. Based on the data in the table, which of the following could not be the graph of $f$ on the interval $1.9 \leq x \leq 2.1 ?$

## Unit 1 Progress Check: MCQ Part B



## Unit 1 Progress Check: MCQ Part B




## Unit 1 Progress Check: MCQ Part B

8. 



Let $f$ be the piecewise function defined above. Also shown is a portion of the graph of $f$. What is the value of $\lim _{x \rightarrow 2} f(f(x))$ ?
(A) -15
(B) -7
(C) -1
(D) $\frac{1}{2}$

## Unit 1 Progress Check: MCQ Part B

9. 



The table above gives selected values for a function $f$. Also shown is a portion of the graph of $f$. The graph consists of a line segment for $x<3$ and part of a parabola for $x>3$. What is $\lim _{x \rightarrow 3} f(x)$ ?
(A) 1.6
(B) 1.602
(C) 2
(D) The limit does not exist.

## Unit 1 Progress Check: MCQ Part B

10. $f(x)=\left\{\begin{array}{cl}\frac{2 x^{2}-3 x-2}{x-2} & \text { if } x \neq 2 \\ 7 & \text { if } x=2\end{array}\right.$

The function $f$ is defined above. Which of the following statements is true?
(A) $f$ is continuous at $x=2$.
(B) $f$ has a removable discontinuity at $x=2$.
(C) $f$ has a jump discontinuity at $x=2$.
(D) $f$ has a discontinuity due to a vertical asymptote at $x=2$.
11. The function $f$ has a jump discontinuity at $x=3$. Which of the following could be the graph of $f$ ?


Unit 1 Progress Check: MCQ Part B



Unit 1 Progress Check: MCQ Part B


## Unit 1 Progress Check: MCQ Part B

12. 



## Graph of $f$

The graph of a function $f$ is shown in the figure above. At what value of $x$ does $f$ have a removable discontinuity?
(A) $x=1$
(B) $x=3$
(C) $x=4$
(D) $x=5$
13. If $\lim _{x \rightarrow 6} f(x)$ exists with $\lim _{x \rightarrow 6} f(x)<5$ and $f(6)=10$, which of the following statements must be false?

## Unit 1 Progress Check: MCQ Part B

(A) $\lim _{x \rightarrow 6^{-}} f(x)=0$
(B) $\lim _{x \rightarrow 6^{+}} f(x)<5$
(C) $\lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{+}} f(x)$
(D) $f$ is continuous at $x=6$.
14. $f(x)= \begin{cases}2^{x} & \text { for } 0<x<1 \\ \frac{1}{2} x^{2}-x+\frac{5}{2} & \text { for } 1<x<2\end{cases}$

Let $f$ be the function defined above. Which of the following statements is true?
(A) $f$ is continuous at $x=1$.
(B) $f$ is not continuous at $x=1$ because $f(1)$ does not exist.
(C) $f$ is not continuous at $x=1$ because $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$.
(D) $f$ is not continuous at $x=1$ because $\lim _{x \rightarrow 1} f(x)$ does not exist.
15. Which of the following functions is continuous at $x=3$ ?

## Unit 1 Progress Check: MCQ Part B

(A) $f(x)=\left\{\begin{array}{ccc}\frac{x^{2}+x-12}{x-3} & \text { for } & x \neq 3 \\ 8 & \text { for } & x=3\end{array}\right.$
(B) $g(x)=\left\{\begin{array}{cc}4 x-7 & \text { for } x<3 \\ \text { undefined } & \text { for } x=3 \\ x+2 & \text { for } x>3\end{array}\right.$
(C) $h(x)=\left\{\begin{array}{cl}-8 \sin \left(\frac{\pi}{2} x\right) & \text { for } x<3 \\ 8 & \text { for } x=3 \\ -8 \cos (\pi x) & \text { for } x>3\end{array}\right.$
(D) $k(x)=\left\{\begin{array}{cll}8+\ln (4-x) & \text { for } & x \leq 3 \\ 8 \ln (x-2) & \text { for } & x>3\end{array}\right.$

