Unit 1 Progress Check: MCQ Part C

1. Let f be the function given by $f(x)=\frac{\left|x^{2}-3\right| \cdot(x+0.5)}{\left(x^{2}-3\right)(x+0.5)}$. On which of the following open intervals is f continuous?
(A) $(-2,-1)$
(B) $(-1,0)$
(C) $(0,1)$
(D) $(1,2)$
2. $f(x)= \begin{cases}e^{b x} & \text { for } x \leq 2 \\ 1.5 x+b & \text { for } x>2\end{cases}$

Let f be the function defined above. For what values of b is f continuous at $x=2$?
(A) 0.508 only
(B) 0.647 only
(C) -1.282 and 0.508
(D) -2.998 and 0.647
3. Let f be the function given by $f(x)=x+\tan \left(\frac{x}{5}\right)-10$. The Intermediate Value Theorem applied to f on the closed interval [12,15] guarantees a solution in [12, 15] to which of the following equations?

Unit 1 Progress Check: MCQ Part C

(A) $f(x)=-10$
(B) $f(x)=0$
(C) $f(x)=4$
(D) $f(x)=14$
4.

The graph of the function f is shown above. On which of the following intervals is f continuous?

Unit 1 Progress Check: MCQ Part C

(A) $(-1,1)$
(B) $(1,2)$
(C) $(2,3)$
(D) $(3,5)$
5. The function f is continuous on the interval $-1<x<3$ and is not continuous on the interval $-1 \leq x \leq 3$. Which of the following could not be an expression for $f(x)$?
(A) $\frac{x+1}{x-3}$
(B) $\frac{x-3}{x+1}$
(C) $(x+1)(x-3)$
(D) $\frac{1}{(x+1)(x-3)}$
6. $g(x)= \begin{cases}\frac{x^{2}-9}{4 x+12} & \text { for } x \neq-3 \\ k & \text { for } x=-3\end{cases}$

Let g be the function defined above, where k is a constant. For what value of k is g continuous at $x=-3$?

Unit 1 Progress Check: MCQ Part C

(A) -3
(B) $-\frac{3}{2}$
(C) $-\frac{3}{4}$
(D) 0
7. $f(x)= \begin{cases}c+c x-x^{2} & \text { for } x<3 \\ 7 & \text { for } x=3 \\ 2 c+\frac{3}{x-2} & \text { for } x>3\end{cases}$

Let f be the function defined above. For what value of c, if any, is f continuous at $x=3$?
(A) 2
(B) 4
(C) 6
(D) There is no such c.
8. The function h is defined by $h(x)=\frac{x^{2}-7}{x-3}$. Which of the following statements must be true?

Unit 1 Progress Check: MCQ Part C

(A) $\lim _{x \rightarrow 3^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=-\infty$
(B) $\lim _{x \rightarrow 3^{-}} h(x)=+\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=-\infty$
(C) $\lim _{x \rightarrow 3^{-}} h(x)=-\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=+\infty$
(D) $\lim _{x \rightarrow 3^{-}} h(x)=+\infty$ and $\lim _{x \rightarrow 3^{+}} h(x)=+\infty$
9. Let f be a function such that $\lim _{x \rightarrow 5^{-}} f(x)=\infty$. Which of the following statements must be true?
(A) $\lim _{x \rightarrow 5^{+}} f(x)=\infty$
(B) f is undefined at $x=5$.
(C) The graph of f has a vertical asymptote at $x=5$.
(D) The graph of f has a vertical asymptote at $x=-5$.
10. Let f be a function of x. If $\lim _{x \rightarrow 2^{-}} f(x)=+\infty$ and $\lim _{x \rightarrow 2^{+}} f(x)=-\infty$, which of the following could be a graph of f ?

Unit 1 Progress Check: MCQ Part C

Unit 1 Progress Check: MCQ Part C

(c)

Unit 1 Progress Check: MCQ Part C

11. Let f be the function defined by $f(x)=\frac{2 x+3}{x+1}$. Which of the following statements are true?
12. The graph of f has a horizontal asymptote at $y=2$ because $\lim _{x \rightarrow \infty} f(x)=2$.
13. The graph of f has a horizontal asymptote at $y=2$ because $\lim _{x \rightarrow-\infty} f(x)=2$.
14. The graph of f has a vertical asymptote at $x=-1$ because $\lim _{x \rightarrow-1^{+}} f(x)=\infty$.
(A) I only
(B) III only
C. I and II only
(D) I, II, and III
15. The population on an island is modeled by $P(t)=\frac{6000}{40+60 e^{-0.03 t}}$ for $t \geq 0$, where $P(t)$ is the number of people on the island after t years. What is $\lim _{t \rightarrow \infty} P(t)$?
(A) 60
(B) 100
(C) 150
(D) 6000
16. Let f be the function defined by $f(x)=\frac{3 x^{20}}{4 e^{x}+8 x^{20}}$ for $x>0$. Which of the following is a horizontal asymptote to the graph of f ?

Unit 1 Progress Check: MCQ Part C

(A) $y=0$
(B) $y=\frac{3}{8}$
(C) $y=\frac{3}{4}$
(D) There is no horizontal asymptote to the graph of f.
14. Let f be a function such that $f(5)<6<f(7)$. Which of the following statements provides sufficient additional information to conclude that there is a value $x=c$ in the interval $[5,7]$ such that $f(c)=6$?
(A) f is defined for all x.
(B) f is increasing for all x.
(C) f is continuous for all x.
(D) There is a value $x=c$ in the interval $[5,7]$ such that $\lim _{x \rightarrow c} f(x)=6$.
15. Let f be a function of x. Which of the following statements, if true, would guarantee that there is a number c in the interval $[-2,3]$ such that $f(c)=10 ?$

Unit 1 Progress Check: MCQ Part C

(A) f is increasing on the interval $[-2,3]$, where $f(-2)=0$ and $f(3)=20$.
(B) f is increasing on the interval $[-2,3]$, where $f(-2)=15$ and $f(3)=30$.
(C) f is continuous on the interval $[-2,3]$, where $f(-2)=0$ and $f(3)=20$.
(D) f is continuous on the interval $[-2,3]$, where $f(-2)=15$ and $f(3)=30$.

