Unit 2 Progress Check: MCQ Part A

1. The derivative of a function f is given by $f^{\prime}(x)=0.1 x+e^{0.25 x}$. At what value of x for $x>0$ does the line tangent to the graph of f at x have slope 2 ?
(A) 0.512
(B) 1.849
(C) 2.287
(D) 8.113
2.

x	0	1
$f(x)$	1	2

Let f be the function given by $f(x)=2^{x^{3}}$. Selected values of f are given in the table above. If the values in the table are used to approximate $f^{\prime}(0.5)$, what is the difference between the approximation and the actual value of $f^{\prime}(0.5)$?
(A) 0
(B) 0.433
(C) 0.567
(D) 1
3. Let f be the function given by $f(x)=\frac{1}{7} x^{7}+\frac{1}{2} x^{6}-x^{5}-\frac{15}{4} x^{4}+\frac{4}{3} x^{3}+6 x^{2}$. Which of the following statements is true?
(A) $f^{\prime}(-3.1)<f^{\prime}(-1.5)<f^{\prime}(0.4)$
(B) $f^{\prime}(-3.1)<f^{\prime}(0.4)<f^{\prime}(-1.5)$
(C) $f^{\prime}(-1.5)<f^{\prime}(0.4)<f^{\prime}(-3.1)$
(D) $f^{\prime}(0.4)<f^{\prime}(-1.5)<f^{\prime}(-3.1)$
4.

x	1	2	3	4	5
$f(x)$	2	3	5	6	14

Selected values of a function f are shown in the table above. What is the average rate of change of f over the interval $[1,5]$?
(A) $\frac{5-1}{14-2}$
(B) $\frac{14+2}{5+1}$
(C) $\frac{14-2}{5-1}$
(D) $\frac{2+3+5+6+14}{5}$

Unit 2 Progress Check: MCQ Part A

5.

The graph of the function f, shown above, consists of three line segments. What is the average rate of change of f over the interval $-1 \leq x \leq 6$?
(A) $-\frac{5}{2}$
(B) 0
(C) $\frac{1}{6}$
(D) 4
6. The function f is given by $f(x)=1+3 \cos x$. What is the average rate of change of f over the interval $[0, \pi]$?

Unit 2 Progress Check: MCQ Part A
(A) $-\frac{6}{\pi}$
(B) $-\frac{2}{\pi}$
(C) $\frac{2}{\pi}$
(D) 1
7. The derivative of the function f is given by $f^{\prime}(x)=-3 x+4$ for all x, and $f(-1)=6$. Which of the following is an equation of the line tangent to the graph of f at $x=-1$?
(A) $y=-3 x+3$
(B) $y=-3 x+4$
(C) $y=7 x+6$
(D) $y=7 x+13$

Unit 2 Progress Check: MCQ Part A
8.

The graph of f^{\prime}, the derivative of a function f, is shown above. The points $(2,6)$ and $(4,18)$ are on the graph of f. Which of the following is an equation of the line tangent to the graph of f at $x=2$?
(A) $y=2 x+1$
(B) $y=5 x-4$
(C) $y=5 x-10$
(D) $y=6 x-6$
9.

The graph of the trigonometric function f is shown above for $a \leq x \leq b$. At which of the following points on the graph of f could the instantaneous rate of change of f equal the average rate of change of f on the interval $[a, b]$?
(A) A
(B) B
(C) C
(D) D

Unit 2 Progress Check: MCQ Part A

10. Which of the following statements, if true, can be used to conclude that $f(2)$ exists?
11. $\lim _{x \rightarrow 2} f(x)$ exists.
12. f is continuous at $x=2$.
13. f is differentiable at $x=2$.
(A) I only
(B) II only
(C) II and III only
(D) I, II, and III
14. $f(x)= \begin{cases}3 x+1 & \text { for } x \leq 2 \\ 5 x-3 & \text { for } x>2\end{cases}$

Let f be the function defined above. Which of the following statements is true?
(A) f is neither continuous nor differentiable at $x=2$.
(B) f is continuous but not differentiable at $x=2$.
(C) f is differentiable but not continuous at $x=2$.
(D) f is both continuous and differentiable at $x=2$.

Unit 2 Progress Check: MCQ Part A

12.

Graph of f

The graph of the function f, shown above, has a vertical tangent at $x=-2$ and horizontal tangents at $x=-3$ and $x=-1$. Which of the following statements is false?
(A) f is not differentiable at $x=-2$ because the graph of f has a vertical tangent at $x=-2$.
(B) f is not differentiable at $x=0$ and $x=2.5$ because f is not continuous at $x=0$ and $x=2.5$.
(C) f is not differentiable at $x=1.5$ and $x=4$ because the graph of f has sharp corners at $x=1.5$ and $x=4$.

D f is not differentiable at $x=-3$ and $x=-1$ because the graph of f has horizontal tangents at $x=-3$ and $x=-1$.
13. If $f(x)=x^{5}$, then $f^{\prime}(x)=$
(A) x^{4}
(B) $4 x^{4}$
(C) $5 x^{4}$
(D) $5 x^{5}$
14. If $f(x)=\frac{1}{x^{7}}$, then $f^{\prime}(x)=$
(A) $\frac{1}{7 x^{6}}$
(B) $-\frac{7}{x^{6}}$
(C) $-\frac{1}{7 x^{8}}$
(D) $-\frac{7}{x^{8}}$
15. If f is the function defined by $f(x)=\sqrt[4]{x}$, what is $f^{\prime}(x)$?
(A) $\frac{1}{4} x^{\frac{1}{4}}$
(B) $x^{-\frac{3}{4}}$
(C) $\frac{1}{4} x^{-\frac{3}{4}}$
(D) $4 \cdot \sqrt[3]{x}$

