- **1.** Let g be the function given by $g(x) = x^4 3x^3 x$. What are all values of x such that $g'(x) = \frac{1}{2}$?
- \bigcirc A -2.750
- (B) 2.297

- \bigcirc D -0.353 and 3.119
- 2. Let f be the function given by $f(x)=x^3+3x^2-4$. What is the value of f'(2) ?
- (A) 48

- (c) 20
- D 10
- 3. If $f(x) = 4x^6 3x^4 + 2x^3 + e^2$, then f'(x) =
- $\widehat{ ({\sf A})} \ 4x^5 3x^3 + 2x^2$

- $oxed{\mathsf{C}} \ 24x^5 12x^3 + 6x^2 + 2e$
- $oxed{ extstyle D} 24x^6 12x^4 + 6x^3$

4. If $g\left(x\right)=4\cos x+2\sin x+1$, then $g'\left(\frac{\pi}{6}\right)=$

- \bigcirc B $2-\sqrt{3}$
- (c) $2+\sqrt{3}$
- \bigcirc D $2+2\sqrt{3}$
- 5. Let g be the function given by $g(x) = \lim_{h \to 0} \frac{\sin(x+h) \sin x}{h}$. What is the instantaneous rate of change of g with respect to x at $x = \frac{\pi}{3}$?

- \bigcirc B $-\frac{1}{2}$
- \bigcirc $\frac{1}{2}$
- 6. $\lim_{h\to 0} \frac{5e^x 5e^{x+h}}{3h} =$

AP Calculus AB

- \bigcirc $-5e^x$
- \bigcirc B $5e^x$
- \bigcirc $-rac{5}{3}e^x$
 - \bigcirc D $\frac{5}{3}e^a$
 - 7. The function f is given by $f(x) = (x^3 + bx + 6)g(x)$, where b is a constant and g is a differentiable function satisfying g(2) = 3 and g'(2) = -1. For what value of b is f'(2) = 0?
 - \bigcirc -7
 - \bigcirc -10
 - (c) -12
 - \bigcirc -22

The table above gives the values of the differentiable functions f and g and their derivatives at x=4. What is the value of $\frac{d}{dx}\left(f(x)g\left(x\right)\right)$ at x=4?

AP Calculus AB

- (A) 11
- (B) 29
- © 31
- D 35
- 9. If $f(x) = \sqrt{x} \cos x$, then f'(x) =

- $\bigcirc \frac{\cos x 2x \sin x}{2\sqrt{x}}$
- **10.** If $f(x)=rac{2x^2-1}{5x+3}$, then f'(-1)=
- $\bigcirc A -\frac{3}{2}$
- \bigcirc B $-\frac{4}{5}$
- \bigcirc $\frac{3}{4}$

11.

The graphs of the functions f and g are shown above. If $h\left(x\right)=rac{f(x)+4}{g(x)+2x}$, then $h'\left(3\right)=$

- $\bigcirc A -\frac{1}{2}$
- $\left(\mathbf{B}\right) \frac{1}{16}$
- $\bigcirc \frac{3}{16}$

- **12.** What is the slope of the line tangent to the graph of $y = \frac{9x^2}{x+2}$ at x = 1?
- (A) 3
- **B** 5

(D) 18

- 13. $\frac{d}{dx}(\tan x) =$
- \bigcirc $-\cot x$
- \bigcirc B $-\csc^2 x$
- \bigcirc $\cot x$
- \bigcirc $\sec^2 x$

- \bigcirc sec x
- \bigcirc B $-\sec x$
- \bigcirc $\csc x \cot x$
- \bigcirc $-\csc x \cot x$
- **15.** Below is an attempt to derive the derivative of $\sec x$ using the product rule, where x is in the domain of $\sec x$. In which step, if any, does an error first appear?
 - Step 1: $\sec x \cdot \cos x = 1$
 - Step 2: $\frac{d}{dx} \left(\sec x \cdot \cos x \right) = 0$
 - Step 3: $\frac{d}{dx} (\sec x) \cdot \cos x \sec x \cdot \sin x = 0$
 - Step 4: $\frac{d}{dx}(\sec x) = \frac{\sec x \cdot \sin x}{\cos x} = \sec x \cdot \frac{\sin x}{\cos x} = \sec x \cdot \tan x$

AP Calculus AB Scoring Guide

Unit 2 Progress Check: MCQ Part B

Step 1

Step 2

C) Step 3

D There is no error.

