Unit 2 Progress Check: MCQ Part B

1. Let g be the function given by $g(x)=x^{4}-3 x^{3}-x$. What are all values of x such that $g^{\prime}(x)=\frac{1}{2}$?
(A) -2.750
(B) 2.297
(C) 2.320
(D) -0.353 and 3.119
2. Let f be the function given by $f(x)=x^{3}+3 x^{2}-4$. What is the value of $f^{\prime}(2)$?
(A) 48
(B) 24
(C) 20
(D) 10
3. If $f(x)=4 x^{6}-3 x^{4}+2 x^{3}+e^{2}$, then $f^{\prime}(x)=$
(A) $4 x^{5}-3 x^{3}+2 x^{2}$
(B) $24 x^{5}-12 x^{3}+6 x^{2}$
(C) $24 x^{5}-12 x^{3}+6 x^{2}+2 e$
(D) $24 x^{6}-12 x^{4}+6 x^{3}$

Unit 2 Progress Check: MCQ Part B

4. If $g(x)=4 \cos x+2 \sin x+1$, then $g^{\prime}\left(\frac{\pi}{6}\right)=$
(A) $-2+\sqrt{3}$
(B) $2-\sqrt{3}$
(C) $2+\sqrt{3}$
(D) $2+2 \sqrt{3}$
5. Let g be the function given by $g(x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}$. What is the instantaneous rate of change of g with respect to x at $x=\frac{\pi}{3}$?
(A) $-\frac{\sqrt{3}}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
6. $\lim _{h \rightarrow 0} \frac{5 e^{x}-5 e^{x+h}}{3 h}=$

Unit 2 Progress Check: MCQ Part B

(A) $-5 e^{x}$
(B) $5 e^{x}$
(C) $-\frac{5}{3} e^{x}$
(D) $\frac{5}{3} e^{x}$
7. The function f is given by $f(x)=\left(x^{3}+b x+6\right) g(x)$, where b is a constant and g is a differentiable function satisfying $g(2)=3$ and $g^{\prime}(2)=-1$. For what value of b is $f^{\prime}(2)=0$?
(A) -7
(B) -10
(C) -12
(D) -22
8.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
4	2	7	3	5

The table above gives the values of the differentiable functions f and g and their derivatives at $x=4$. What is the value of $\frac{d l}{d x}(f(x) g(x))$ at $x=4$?

Unit 2 Progress Check: MCQ Part B

(A) 11
(B) 29
(C) 31
(D) 35
9. If $f(x)=\sqrt{x} \cos x$, then $f^{\prime}(x)=$
(A) $-\frac{\sin x}{2 \sqrt{x}}$
(B) $\frac{1-2 \sqrt{x} \sin x}{2 \sqrt{x}}$
(C) $\frac{\cos x-2 x \sin x}{2 \sqrt{x}}$
(D) $\frac{\cos x+2 x \sin x}{2 \sqrt{x}}$
10. If $f(x)=\frac{2 x^{2}-1}{5 x+3}$, then $f^{\prime}(-1)=$
(A) $-\frac{3}{2}$
(B) $-\frac{4}{5}$
(C) $\frac{3}{4}$
(D) $\frac{13}{4}$

Unit 2 Progress Check: MCQ Part B

11.

The graphs of the functions f and g are shown above. If $h(x)=\frac{f(x)+4}{g(x)+2 x}$, then $h^{\prime}(3)=$
(A) $-\frac{1}{2}$
(B) $-\frac{1}{16}$
(C) $\frac{3}{16}$
(D) $\frac{3}{2}$
12. What is the slope of the line tangent to the graph of $y=\frac{9 x^{2}}{x+2}$ at $x=1$?
(A) 3
(B) 5
(C) 7
(D) 18

Unit 2 Progress Check: MCQ Part B

13. $\frac{d}{d x}(\tan x)=$
(A) $-\cot x$
(B) $-\csc ^{2} x$
(C) $\cot x$
(D) $\sec ^{2} x$
14. $\frac{d}{d / x}(\csc x)=$
(A) $\sec x$
(B) $-\sec x$
(C) $\csc x \cot x$

D $-\csc x \cot x$
15. Below is an attempt to derive the derivative of $\sec x$ using the product rule, where x is in the domain of $\sec x$. In which step, if any, does an error first appear?

- Step 1: $\sec x \cdot \cos x=1$
- Step 2: $\frac{d}{d x}(\sec x \cdot \cos x)=0$
- Step 3: $\frac{d d}{d x}(\sec x) \cdot \cos x-\sec x \cdot \sin x=0$
- Step 4: $\frac{d /}{d / x}(\sec x)=\frac{\sec x \cdot \sin x}{\cos x}=\sec x \cdot \frac{\sin x}{\cos x}=\sec x \cdot \tan x$

Unit 2 Progress Check: MCQ Part B

(A) Step 1
(B) Step 2
(C) Step 3
(D) There is no error.

