
1. If $g(x) = \ln x$ and f is a differentiable function of x, which of the following is equivalent to the derivative of f(g(x)) with respect to x?

A I only

B II only

(c) III only

3. Let f be a differentiable function. If $h(x) = (1 + f(3x))^2$, which of the following gives a correct process for finding h'(x)?

⁽D) I and III only

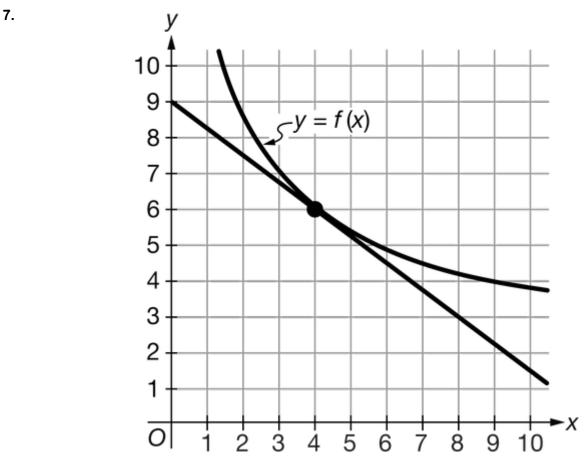
(A)
$$h'(x) = 2(1 + f(3x))$$

(B) $h'(x) = 2(1 + f(3x)) \cdot f'(3x)$
(C) $h'(x) = 2(1 + f(3x)) \cdot f'(x)$

 $(\texttt{D} \hspace{0.1cm} h' \hspace{0.1cm} (x) = 2 \hspace{0.1cm} (1 + f \hspace{0.1cm} (3x)) \cdot f' \hspace{0.1cm} (3x) \cdot 3 \\$

- 4. What is the slope of the line tangent to the curve $y^3 xy^2 + x^3 = 5$ at the point (1,2) ?
- $\widehat{A} \quad \frac{1}{10}$ $\widehat{B} \quad \frac{1}{8}$ $\widehat{C} \quad \frac{5}{12}$ $\widehat{D} \quad \frac{11}{4}$
- 5. If $\sin(x+y) = 3x 2y$, then $\frac{dy}{dx} =$
- $(A) \ \frac{3 \cos(x + y)}{2}$
- $(B) \ \frac{1{-}\cos(x{+}y)}{\cos(x{+}y)}$
- C $\frac{3}{2+\cos(x+y)}$

 $\bigcirc \quad \frac{3 - \cos(x + y)}{2 + \cos(x + y)}$


6.
$$f(-2) = 3$$
 $f'(-2) = 4$ $g(4) = 5$ $g'(4) = 2$

The point (-2, 4) lies on the curve in the xy-plane given by the equation f(x)g(y) = 17 - x - y, where f is a differentiable function of x and g is a differentiable function of y. Selected values of f, f', g, and g' are given in the table above. What is the value of $\frac{dy}{dx}$ at the point (-2, 4)?

(A)
$$-27$$

(B) $-\frac{11}{3}$

$$(c) -3$$

Copyright © 2017. The College Board. These materials are part of a College Board program. Use or distribution of these materials online or in print beyond your school's participation in the program is prohibited.

The graph of the decreasing differentiable function f is shown above. Also shown is the line tangent to the graph of f at the point (4,6). Let g be the inverse of f. Which of the following statements about g' is true?

$$A g'(4) = -\frac{4}{3}$$

 $\bigcirc B g'(4) = -\frac{3}{4}$

(c)
$$g'(6) = -\frac{4}{3}$$

- $\bigcirc \ \ \, g'(6)=-\tfrac{3}{4}$
- 8. Let f be the increasing function defined by $f(x) = x^3 + 2x^2 + 4x + 5$, where f(-1) = 2. If g is the inverse function of f, which of the following is a correct expression for g'(2)?

(A)
$$g'(2) = \frac{1}{f'(2)}$$

(B) $g'(2) = \frac{1}{f'(-1)}$
(C) $g'(2) = f'(-1)$

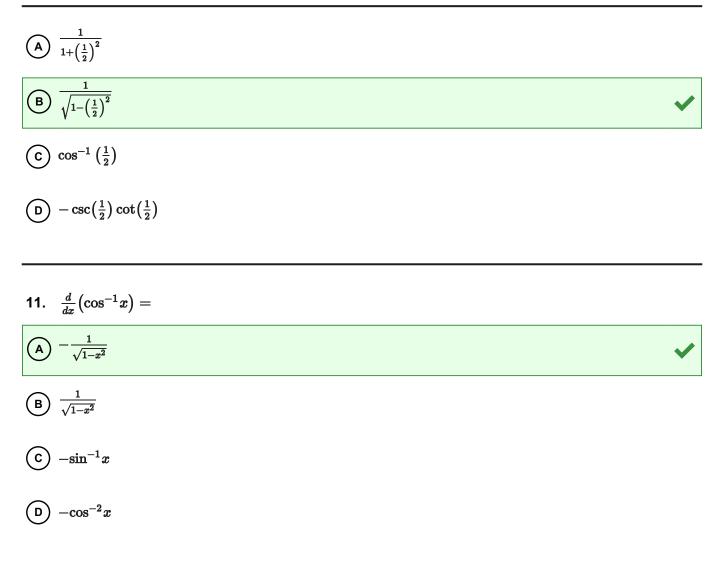
(D)
$$g'(2) = f'(2)$$

9.

x	0	2	4
f(x)	8	5	2
$f'\left(x ight)$	-1	-2	-5

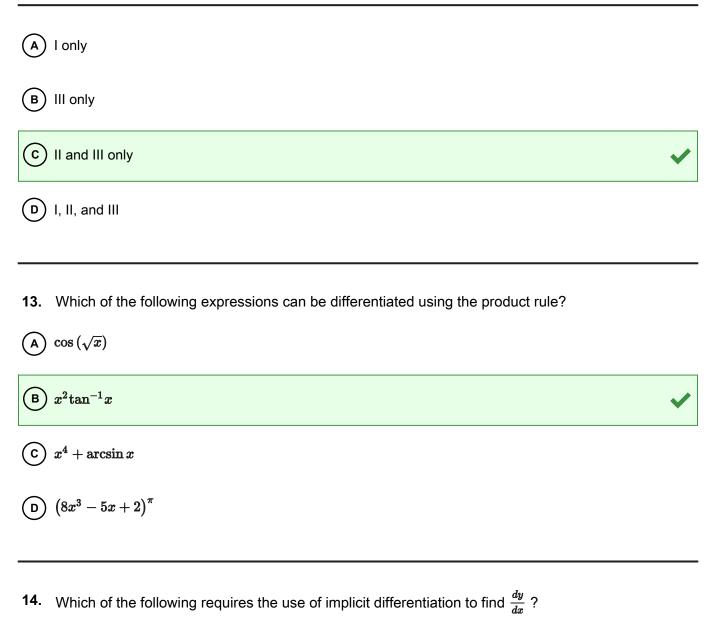
The table above gives selected values for a differentiable and decreasing function f and its derivative. If $g(x) = f^{-1}(x)$ for all x, which of the following is a correct expression for g'(2)?

(A)
$$g'(2) = f'(2) = -2$$


B
$$g'(2) = \frac{1}{f'(2)} = -\frac{1}{2}$$

C
$$g'(2) = \frac{1}{f'(4)} = -\frac{1}{5}$$

(D)
$$g'(2) = -\frac{f'(2)}{(f(2))^2} = \frac{2}{25}$$


10.
$$\left. \frac{d}{dx} \left(\sin^{-1} x \right) \right|_{x=\frac{1}{2}} =$$

- **12.** Which of the following methods can be used to find the derivative of $y = \arcsin x$ with respect to x?
 - 1. Use the quotient rule to differentiate $\frac{1}{\sin x}$.
 - 2. Use the chain rule to differentiate $\sin(\arcsin x) = x$.
 - 3. Use implicit differentiation to differentiate the function y in the relation $\sin y = x$ with respect to x.

$$A \quad y-x^2-3x+5=0$$

$$(B) y = \ln(3+x) + x^2$$

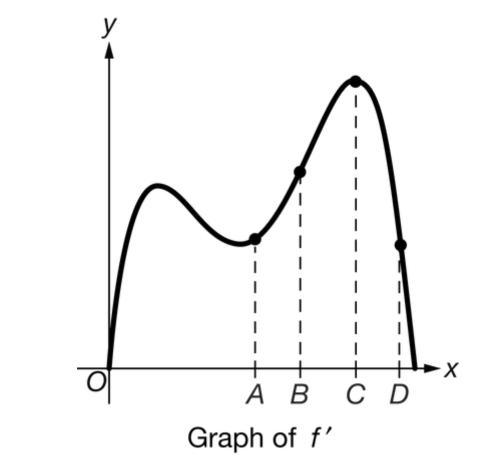
$$\bigcirc y = \ln(y+x) + x^2$$

$$\bigcirc \quad y = \frac{x^3-4}{3x+2}$$

 $\bigcirc \frac{48}{x^5}$

Unit 3 Progress Check: MCQ

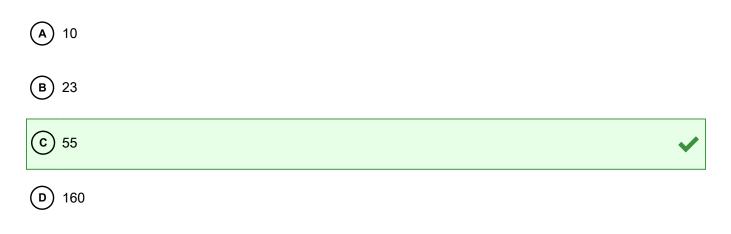
15. For which of the following functions would the quotient rule be considered the best method for finding the derivative?


(A)
$$y = (2x+1)^{-\frac{1}{2}}$$

(B) $y = \frac{2x+1}{x}$
(C) $y = \sin^{-1}(2x+1)$
(D) $y = \frac{\sin(2x+1)}{2x+1}$
16. If $y = 2 \ln x$, then $\frac{d^4y}{dx^4} =$
(A) $\frac{2}{x}$
(B) $-\frac{12}{x^4}$
(C) $\frac{16}{x^4}$

AP Calculus AB

Unit 3 Progress Check: MCQ



The figure above shows the graph of f', the derivative of the function f. At which of the four indicated values of x is f''(x) greatest?

▲ A
■ B
✓
○ C
□ D

18. Let y = f(x) be a twice-differentiable function such that f(1) = 3 and $\frac{dy}{dx} = 4\sqrt{y^2 + 7x^2}$. What is the value of $\frac{d^2y}{dx^2}$ at x = 1?

