Unit 3 Progress Check: MCQ

1. If $g(x)=\ln x$ and f is a differentiable function of x, which of the following is equivalent to the derivative of $f(g(x))$ with respect to x ?
(A) $f^{\prime}\left(\frac{1}{x}\right)$
(B) $\frac{f^{\prime}(x)}{x}$
(C) $f^{\prime}(\ln x)$
(D) $\frac{f^{\prime}(\ln x)}{x}$
2. For which of the following functions is the chain rule an appropriate method to find the derivative with respect to x ?
3. $y=\sin \left(3 x^{2}\right)$
4. $y=e^{x} \tan x$
5. $y=\frac{1}{8 x^{4}-2 x}$
(A) I only
(B) II only
(c) III only

D I and III only
3. Let f be a differentiable function. If $h(x)=(1+f(3 x))^{2}$, which of the following gives a correct process for finding $h^{\prime}(x)$?

Unit 3 Progress Check: MCQ

(A) $h^{\prime}(x)=2(1+f(3 x))$
(B) $h^{\prime}(x)=2(1+f(3 x)) \cdot f^{\prime}(3 x)$
(C) $h^{\prime}(x)=2(1+f(3 x)) \cdot f^{\prime}(x)$
(D) $h^{\prime}(x)=2(1+f(3 x)) \cdot f^{\prime}(3 x) \cdot 3$
4. What is the slope of the line tangent to the curve $y^{3}-x y^{2}+x^{3}=5$ at the point $(1,2)$?
(A) $\frac{1}{10}$
(B) $\frac{1}{8}$
(C) $\frac{5}{12}$
(D) $\frac{11}{4}$
5. If $\sin (x+y)=3 x-2 y$, then $\frac{d y}{d x}=$
(A) $\frac{3-\cos (x+y)}{2}$
(B) $\frac{1-\cos (x+y)}{\cos (x+y)}$
(C) $\frac{3}{2+\cos (x+y)}$
(D) $\frac{3-\cos (x+y)}{2+\cos (x+y)}$

Unit 3 Progress Check: MCQ

6.

$$
\begin{array}{l|l|l|l}
\hline f(-2)=3 & f^{\prime}(-2)=4 & g(4)=5 & g^{\prime}(4)=2 \\
\hline
\end{array}
$$

The point $(-2,4)$ lies on the curve in the $x y$-plane given by the equation $f(x) g(y)=17-x-y$, where f is a differentiable function of x and g is a differentiable function of y. Selected values of f, f^{\prime}, g, and g^{\prime} are given in the table above. What is the value of $\frac{d y}{d x}$ at the point $(-2,4) ?$
(A) -27
(B) $-\frac{11}{3}$
(C) -3
(D) $-\frac{4}{7}$

Unit 3 Progress Check: MCQ

7.

The graph of the decreasing differentiable function f is shown above. Also shown is the line tangent to the graph of f at the point $(4,6)$. Let g be the inverse of f. Which of the following statements about g^{\prime} is true?
(A) $g^{\prime}(4)=-\frac{4}{3}$
(B) $g^{\prime}(4)=-\frac{3}{4}$
(C) $g^{\prime}(6)=-\frac{4}{3}$
(D) $g^{\prime}(6)=-\frac{3}{4}$
8. Let f be the increasing function defined by $f(x)=x^{3}+2 x^{2}+4 x+5$, where $f(-1)=2$. If g is the inverse function of f, which of the following is a correct expression for $g^{\prime}(2)$?

Unit 3 Progress Check: MCQ

(A) $g^{\prime}(2)=\frac{1}{f^{\prime}(2)}$
(B) $g^{\prime}(2)=\frac{1}{f^{\prime}(-1)}$
(C) $g^{\prime}(2)=f^{\prime}(-1)$
(D) $g^{\prime}(2)=f^{\prime}(2)$
9.

x	0	2	4
$f(x)$	8	5	2
$f^{\prime}(x)$	-1	-2	-5

The table above gives selected values for a differentiable and decreasing function f and its derivative. If $g(x)=f^{-1}(x)$ for all x, which of the following is a correct expression for $g^{\prime}(2)$?
(A) $g^{\prime}(2)=f^{\prime}(2)=-2$
(B) $g^{\prime}(2)=\frac{1}{f^{\prime}(2)}=-\frac{1}{2}$
(C) $g^{\prime}(2)=\frac{1}{f^{\prime}(4)}=-\frac{1}{5}$
(D) $g^{\prime}(2)=-\frac{f^{\prime}(2)}{(f(2))^{2}}=\frac{2}{25}$
10. $\left.\frac{d}{d x}\left(\sin ^{-1} x\right)\right|_{x=\frac{1}{2}}=$

Unit 3 Progress Check: MCQ

(A) $\frac{1}{1+\left(\frac{1}{2}\right)^{2}}$
(B) $\frac{1}{\sqrt{1-\left(\frac{1}{2}\right)^{2}}}$
(C) $\cos ^{-1}\left(\frac{1}{2}\right)$
(D) $-\csc \left(\frac{1}{2}\right) \cot \left(\frac{1}{2}\right)$
11. $\frac{d}{d x}\left(\cos ^{-1} x\right)=$
(A) $-\frac{1}{\sqrt{1-x^{2}}}$
(B) $\frac{1}{\sqrt{1-x^{2}}}$
(C) $-\sin ^{-1} x$
(D) $-\cos ^{-2} x$
12. Which of the following methods can be used to find the derivative of $y=\arcsin x$ with respect to x ?

1. Use the quotient rule to differentiate $\frac{1}{\sin x}$.
2. Use the chain rule to differentiate $\sin (\arcsin x)=x$.
3. Use implicit differentiation to differentiate the function y in the relation $\sin y=x$ with respect to x.

Unit 3 Progress Check: MCQ

(A) I only
(B) III only
C. II and III only
(D) I, II, and III
13. Which of the following expressions can be differentiated using the product rule?
(A) $\cos (\sqrt{x})$
(B) $x^{2} \tan ^{-1} x$

C $x^{4}+\arcsin x$
(D) $\left(8 x^{3}-5 x+2\right)^{\pi}$
14. Which of the following requires the use of implicit differentiation to find $\frac{d y}{d x}$?
(A) $y-x^{2}-3 x+5=0$
(B) $y=\ln (3+x)+x^{2}$

C $y=\ln (y+x)+x^{2}$
(D) $y=\frac{x^{3}-4}{3 x+2}$

Unit 3 Progress Check: MCQ

15. For which of the following functions would the quotient rule be considered the best method for finding the derivative?
(A) $y=(2 x+1)^{-\frac{1}{2}}$
(B) $y=\frac{2 x+1}{x}$
(C) $y=\sin ^{-1}(2 x+1)$
(D) $y=\frac{\sin (2 x+1)}{2 x+1}$
16. If $y=2 \ln x$, then $\frac{d^{4} y}{d x^{4}}=$
(A) $\frac{2}{x}$
(B) $-\frac{12}{x^{4}}$
(C) $\frac{16}{x^{4}}$
(D) $\frac{48}{x^{5}}$

Unit 3 Progress Check: MCQ

17.

Graph of f^{\prime}
The figure above shows the graph of f^{\prime}, the derivative of the function f. At which of the four indicated values of x is $f^{\prime \prime}(x)$ greatest?
(A) A
(B) B
(C) C
(D) D
18. Let $y=f(x)$ be a twice-differentiable function such that $f(1)=3$ and $\frac{d y}{d x}=4 \sqrt{y^{2}+7 x^{2}}$. What is the value of $\frac{d^{2} y}{d x^{2}}$ at $x=1$?

Unit 3 Progress Check: MCQ

(A) 10
(B) 23
(C) 55
(D) 160

