1. Let f be the function given by $f(x) = 5\cos^2(\frac{x}{2}) + \ln(x+1) - 3$. The derivative of f is given by $f'(x) = -5\cos(\frac{x}{2})\sin(\frac{x}{2}) + \frac{1}{x+1}$. What value of c satisfies the conclusion of the Mean Value Theorem applied to f on the interval [1, 4]?

(A) 2.132 because $f(2.132) = \frac{f(4) - f(1)}{3}$

B 2.749 because $f'(2.749) = \frac{f(4) - f(1)}{3}$

c) 3.042 because f'(3.042) = 0

D 3.252 because $f'(3.252) = \frac{f(1)+f(4)}{2}$

- 2. The derivative of the function f is given by $f'(x) = x^2 2 3x \cos x$. On which of the following intervals in [-4, 3] is f decreasing?
- (A) [-4, -3.444], [-1.806, -0.660], and [1.509, 3]

(B) [-4, -2.805] and [-1.227, 0.637]

 $\overline{ extbf{c}}$ [-3.444, -1.806] and [-0.660, 1.509]

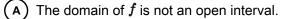
(D) [-2.805, -1.227] and [0.637, 3]

3. The temperature inside a vehicle is modeled by the function f, where f(t) is measured in degrees Fahrenheit and t is measured in minutes. The first derivative of f is given by $f'(t) = t^2 - 3t + \cos t$. At what times t, for 0 < t < 4, does the temperature attain a local minimum?

A	0.354 only
В	1.962
c	3.299 only
D	0.354 and 3.299
4.	Let <i>f</i> be the function given by $f(x) = \frac{x}{(x-4)(x+2)}$ on the closed interval $[-7,7]$. Of the following intervals, on which can the Mean Value Theorem be applied to <i>f</i> ? 1. $[-1,3]$ because <i>f</i> is continuous on $[-1,3]$ and differentiable on $(-1,3)$. 2. $[5,7]$ because <i>f</i> is continuous on $[5,7]$ and differentiable on $(5,7)$. 3. $[1,5]$ because <i>f</i> is continuous on $[1,5]$ and differentiable on $(1,5)$.
A	None
В	l only
c	I and II only
D	I, II, and III

5. Let f be a differentiable function with f(0) = -4 and f(10) = 11. Which of the following must be true for some c in the interval (0, 10)?

- (A) f'(c) = 0, since the Extreme Value Theorem applies.
- (B) $f'(c) = \frac{11+(-4)}{10-0}$, since the Mean Value Theorem applies.
- C $f'(c) = \frac{11-(-4)}{10-0}$, since the Mean Value Theorem applies.
- (D) f'(c) = 1.5, since the Intermediate Value Theorem applies.
- 6. Let f be the function given by $f(x) = \frac{x+4}{(x-1)(x+3)}$ on the closed interval [-5,5]. On which of the following closed intervals is the function f guaranteed by the Extreme Value Theorem to have an absolute maximum and an absolute minimum?


(A) [-5,5]

(B) [-3,1]

© [-2,0]	~
D [0,5]	

7. Let f be the function defined by $f(x) = x \sin x$ with domain $[0, \infty)$. The function f has no absolute minimum and no absolute maximum on its domain. Why does this not contradict the Extreme Value Theorem?

(B) The domain of f is not a closed and bounded interval.

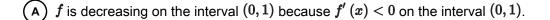
c) The function f is not continuous on its domain.

D) The function f is not differentiable on its domain.

8.	x	2	3	4	5
	f(x)	1	14	20	31

Selected values of a continuous function f are given in the table above. Which of the following statements could be false?

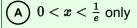
By the Intermediate Value Theorem applied to f on the interval [2,5], there is a value c such that f(c) = 10.


By the Mean Value Theorem applied to f on the interval [2,5], there is a value c such that f'(c)=10.

By the Extreme Value Theorem applied to f on the interval [2,5], there is a value c such that $f(c) \le f(x)$ for all x in [2,5].

D By the Extreme Value Theorem applied to f on the interval [2,5], there is a value c such that $f(c) \ge f(x)$ for all x in [2,5].

9. Let f be the function defined by $f(x) = x^3 - 6x^2 + 9x + 4$ for 0 < x < 3. Which of the following statements is true?

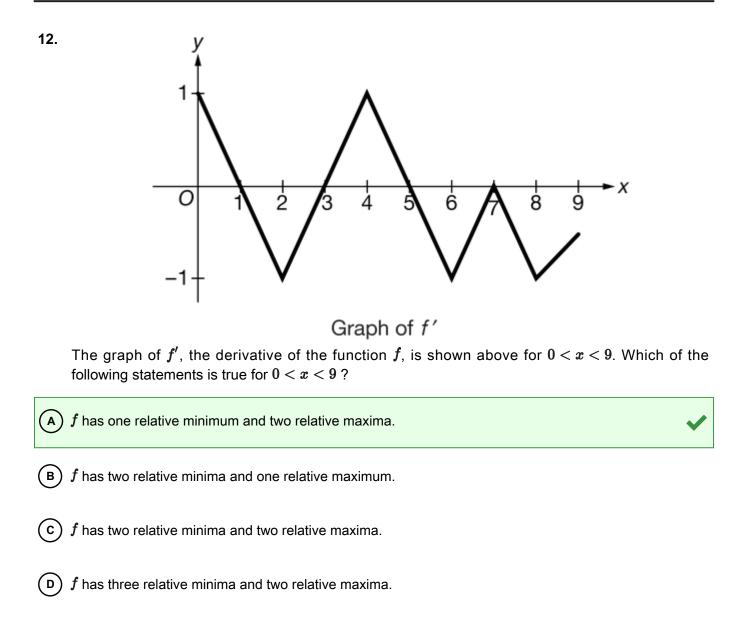


(B) f is increasing on the interval (0,1) because f'(x) < 0 on the interval (0,1).

(c) f is decreasing on the interval (0,2) because f''(x) < 0 on the interval (0,2).

D f is decreasing on the interval (1,3) because $f^{\prime}\left(x
ight)<0$ on the interval (1,3).

10. Let f be the function defined by $f(x) = x \ln x$ for x > 0. On what open interval is f decreasing?


- $\ \ \, \textbf{B} \ \ \, 0 < x < 1$
- $\bigcirc x > \frac{1}{e}$

(D) There is no such interval.

11. Let f be a function with first derivative given by $f'(x) = x(x-5)^2 (x+1)$. At what values of x does f have a relative maximum?

A -1 only	~
B 0 only	
\bigcirc -1 and 5 only	
\bigcirc -1, 0, and 5 only	

