Unit 5 Progress Check: MCQ Part A

1. Let f be the function given by $f(x)=5 \cos ^{2}\left(\frac{x}{2}\right)+\ln (x+1)-3$. The derivative of f is given by $f^{\prime}(x)=-5 \cos \left(\frac{x}{2}\right) \sin \left(\frac{x}{2}\right)+\frac{1}{x+1}$. What value of c satisfies the conclusion of the Mean Value Theorem applied to f on the interval $[1,4]$?
(A) 2.132 because $f(2.132)=\frac{f(4)-f(1)}{3}$
(B) 2.749 because $f^{\prime}(2.749)=\frac{f(4)-f(1)}{3}$
(C) 3.042 because $f^{\prime}(3.042)=0$
(D) 3.252 because $f^{\prime}(3.252)=\frac{f(1)+f(4)}{2}$
2. The derivative of the function f is given by $f^{\prime}(x)=x^{2}-2-3 x \cos x$. On which of the following intervals in $[-4,3]$ is f decreasing?
(A) $[-4,-3.444],[-1.806,-0.660]$, and $[1.509,3]$
(B) $[-4,-2.805]$ and $[-1.227,0.637]$
(C) $[-3.444,-1.806]$ and $[-0.660,1.509]$
(D) $[-2.805,-1.227]$ and $[0.637,3]$
3. The temperature inside a vehicle is modeled by the function f, where $f(t)$ is measured in degrees Fahrenheit and t is measured in minutes. The first derivative of f is given by $f^{\prime}(t)=t^{2}-3 t+\cos t$. At what times t, for $0<t<4$, does the temperature attain a local minimum?

Unit 5 Progress Check: MCQ Part A

(A) 0.354 only
(B) 1.962
(C) 3.299 only
(D) 0.354 and 3.299
4. Let f be the function given by $f(x)=\frac{x}{(x-4)(x+2)}$ on the closed interval $[-7,7]$. Of the following intervals, on which can the Mean Value Theorem be applied to f ?

1. $[-1,3]$ because f is continuous on $[-1,3]$ and differentiable on $(-1,3)$.
2. $[5,7]$ because f is continuous on $[5,7]$ and differentiable on $(5,7)$.
3. $[1,5]$ because f is continuous on $[1,5]$ and differentiable on $(1,5)$.
(A) None
(B) I only
(C) I and II only
(D) $I, I I$, and III
4. Let f be a differentiable function with $f(0)=-4$ and $f(10)=11$. Which of the following must be true for some c in the interval $(0,10)$?

Unit 5 Progress Check: MCQ Part A

(A) $f^{\prime}(c)=0$, since the Extreme Value Theorem applies.
(B) $f^{\prime}(c)=\frac{11+(-4)}{10-0}$, since the Mean Value Theorem applies.
(C) $f^{\prime}(c)=\frac{11-(-4)}{10-0}$, since the Mean Value Theorem applies.
(D) $f^{\prime}(c)=1.5$, since the Intermediate Value Theorem applies.
6. Let f be the function given by $f(x)=\frac{x+4}{(x-1)(x+3)}$ on the closed interval $[-5,5]$. On which of the following closed intervals is the function f guaranteed by the Extreme Value Theorem to have an absolute maximum and an absolute minimum?
(A) $[-5,5]$
(B) $[-3,1]$
(C) $[-2,0]$
(D) $[0,5]$
7. Let f be the function defined by $f(x)=x \sin x$ with domain $[0, \infty)$. The function f has no absolute minimum and no absolute maximum on its domain. Why does this not contradict the Extreme Value Theorem?

Unit 5 Progress Check: MCQ Part A

(A) The domain of f is not an open interval.
(B) The domain of f is not a closed and bounded interval.
(C) The function f is not continuous on its domain.

D The function f is not differentiable on its domain.
8.

x	2	3	4	5
$f(x)$	1	14	20	31

Selected values of a continuous function f are given in the table above. Which of the following statements could be false?
(A)

By the Intermediate Value Theorem applied to f on the interval [2,5], there is a value c such that $f(c)=10$.

B By the Mean Value Theorem applied to f on the interval [2,5], there is a value c such that $f^{\prime}(c)=10$.
(c)

By the Extreme Value Theorem applied to f on the interval [2,5], there is a value c such that $f(c) \leq f(x)$ for all x in $[2,5]$.
(D)

By the Extreme Value Theorem applied to f on the interval [2,5], there is a value c such that $f(c) \geq f(x)$ for all x in $[2,5]$.
9. Let f be the function defined by $f(x)=x^{3}-6 x^{2}+9 x+4$ for $0<x<3$. Which of the following statements is true?

Unit 5 Progress Check: MCQ Part A

(A) f is decreasing on the interval $(0,1)$ because $f^{\prime}(x)<0$ on the interval $(0,1)$.
(B) f is increasing on the interval $(0,1)$ because $f^{\prime}(x)<0$ on the interval $(0,1)$.
(C) f is decreasing on the interval $(0,2)$ because $f^{\prime \prime}(x)<0$ on the interval $(0,2)$.
(D) f is decreasing on the interval $(1,3)$ because $f^{\prime}(x)<0$ on the interval $(1,3)$.
10. Let f be the function defined by $f(x)=x \ln x$ for $x>0$. On what open interval is f decreasing?
(A) $0<x<\frac{1}{e}$ only
(B) $0<x<1$
(C) $x>\frac{1}{e}$

D There is no such interval.
11. Let f be a function with first derivative given by $f^{\prime}(x)=x(x-5)^{2}(x+1)$. At what values of x does f have a relative maximum?
(A) -1 only
(B) 0 only
(C) -1 and 5 only
(D) $-1,0$, and 5 only

Unit 5 Progress Check: MCQ Part A

12.

Graph of f^{\prime}

The graph of f^{\prime}, the derivative of the function f, is shown above for $0<x<9$. Which of the following statements is true for $0<x<9$?

A f has one relative minimum and two relative maxima.
(B) f has two relative minima and one relative maximum.
(C) f has two relative minima and two relative maxima.
(D) f has three relative minima and two relative maxima.

