Unit 5 Progress Check: MCQ Part B

1. The second derivative of the function f is given by $f^{\prime \prime}(x)=x^{2} \cos \left(\frac{x^{2}+2 x}{6}\right)$. At what values of x in the interval $(-4,3)$ does the graph of f have a point of inflection?
(A) 2.229 only
(B) 0 and 2.229
(C) -2.357 and 0.987
(D) $-3.259,0$, and 1.603
2. The second derivative of the function f is given by $f^{\prime \prime}(x)=\sin \left(\frac{x^{2}}{8}\right)-2 \cos x$. The function f has many critical points, two of which are at $x=0$ and $x=6.949$. Which of the following statements is true?
(A) f has a local minimum at $x=0$ and at $x=6.949$.
(B) f has a local minimum at $x=0$ and a local maximum at $x=6.949$.
(C) f has a local maximum at $x=0$ and a local minimum at $x=6.949$.
(D) f has a local maximum at $x=0$ and at $x=6.949$.
3. Let f be the function given by $f(x)=2 x^{3}+3 x^{2}+1$. What is the absolute maximum value of f on the closed interval $[-3,1]$?

Unit 5 Progress Check: MCQ Part B

(A) 1
(B) 2
(C) 6
(D) 26
4. Let f be the function defined by $f(x)=\sin x+\cos x$. What is the absolute minimum value of f on the interval $[0,2 \pi]$?
(A) -2
(B) $-\sqrt{2}$
(C) -1
(D) 0
5. Let g be the function defined by $g(x)=\left(x^{2}-x+1\right) e^{x}$. What is the absolute maximum value of g on the interval $[-4,1]$?

Unit 5 Progress Check: MCQ Part B

(A) 1
(B) e
(C) $\frac{3}{e}$
(D) $\frac{21}{e^{4}}$
6.

Graph of f^{\prime}
The graph of f^{\prime}, the derivative of the function f, is shown above. On which of the following open intervals is the graph of f concave down?

Unit 5 Progress Check: MCQ Part B

(A) $(-5,-3)$ and $(1,6)$
(B) $(-3,1)$ and $(6,8)$
(C) $(-1,4)$
(D) $(4,8)$
7.

Graph of f^{\prime}
Let f be the function defined by $f(x)=x^{5}-10 x^{3}$. The graph of f^{\prime}, the derivative of f, is shown above. On which of the following intervals is the graph of f concave up?

Unit 5 Progress Check: MCQ Part B

A $x<-\sqrt{3}$ and $0<x<\sqrt{3}$
(B) $-\sqrt{3}<x<0$ and $x>\sqrt{3}$

C $x<-\sqrt{6}$ and $x>\sqrt{6}$
(D) $-\sqrt{6}<x<\sqrt{6}$
8. The Second Derivative Test cannot be used to conclude that $x=2$ is the location of a relative minimum or relative maximum for which of the following functions?
(A) $f(x)=\cos (x-2)$, where $f^{\prime}(x)=-\sin (x-2)$
(B) $f(x)=x e^{-\frac{x}{2}}$, where $f^{\prime}(x)=e^{-\frac{x}{2}}-\frac{1}{2} x e^{-\frac{x}{2}}$
(C) $f(x)=x^{2}-4 x-2$, where $f^{\prime}(x)=2 x-4$
(D) $f(x)=x^{3}-6 x^{2}+12 x+1$, where $f^{\prime}(x)=3 x^{2}-12 x+12$

Unit 5 Progress Check: MCQ Part B

9.

Graph of $f^{\prime \prime}$

The graph of $f^{\prime \prime}$, the second derivative of the continuous function f, is shown above on the interval $[0,9]$. On this interval f has only one critical point, which occurs at $x=6$. Which of the following statements is true about the function f on the interval $[0,9]$?
(A) f has a relative minimum at $x=6$ but not an absolute minimum.
(B) The absolute minimum of f is at $x=6$.
(C) f has a relative maximum at $x=6$ but not an absolute maximum.
(D) The absolute maximum of f is at $x=6$.

Unit 5 Progress Check: MCQ Part B

10.

The graph of f^{\prime}, the derivative of the continuous function f, is shown above on the interval $-8<x<7$. The graph of f^{\prime} has horizontal tangent lines at $x=-6, x=-3, x=2$, and $x=6.3$, and a vertical tangent line at $x=-4$. On which of the following intervals is the graph of f both decreasing and concave up ?
(A) $(-8,0)$ and $(4,7)$
(B) $(-6,-3)$ and $(4,6.3)$ only
(C) $(-4,-3)$ and $(4,6.3)$ only
(D) $(-8,-6),(-3,0)$, and $(6.3,7)$ only
11.

x	$0<x<2$	$x=2$	$2<x<4$	$x=4$	$4<x<6$	$x=6$	$6<x<8$	$x=8$	$8<x<9$
$f^{\prime}(x)$	Unknown	0	Negative	0	Negative	DNE	Positive	0	Unknown
$f^{\prime \prime}(x)$	Negative	-1	Negative	0	Positive	DNE	Negative	0	Unknown

The function f is continuous on the interval $(0,9)$ and is twice differentiable except at $x=6$, where the derivatives do not exist (DNE). Information about the first and second derivatives of f for some values of x in the interval $(0,9)$ is given in the table above. Which of the following statements could be false?

Unit 5 Progress Check: MCQ Part B

A The function f has a relative maximum at $x=2$.
(B) The graph of f has a point of inflection at $x=4$.
(C) The function f has a relative minimum at $x=6$.
(D) The graph of f has a point of inflection at $x=8$.
12.

Graph of f^{\prime}
The graph of f^{\prime}, the derivative of the continuous function f, is shown above on the interval $-2<x<16$. Which of the following statements is true about f on the interval $-2<x<16$?
(A) f has two relative extrema, and the graph of f has three points of inflection.

B f has three relative extrema, and the graph of f has three points of inflection.
(C) f has three relative extrema, and the graph of f has four points of inflection.

D f has five relative extrema, and the graph of f has four points of inflection.

