1. The second derivative of the function f is given by $f''(x) = x^2 \cos\left(\frac{x^2+2x}{6}\right)$. At what values of x in the interval (-4, 3) does the graph of f have a point of inflection?

(A) 2.229 only

B) 0 and 2.229

(c) -2.357 and 0.987

(D) -3.259, 0, and 1.603

- 2. The second derivative of the function f is given by $f''(x) = \sin\left(\frac{x^2}{8}\right) 2\cos x$. The function f has many critical points, two of which are at x = 0 and x = 6.949. Which of the following statements is true?
- (A) f has a local minimum at x=0 and at x=6.949.
- (B) f has a local minimum at x=0 and a local maximum at x=6.949.

(c) f has a local maximum at x = 0 and a local minimum at x = 6.949.

(D) f has a local maximum at x = 0 and at x = 6.949.

3. Let f be the function given by $f(x) = 2x^3 + 3x^2 + 1$. What is the absolute maximum value of f on the closed interval [-3, 1]?

A 1	
B 2	
© 6	~
D 26	

4. Let f be the function defined by $f(x) = \sin x + \cos x$. What is the absolute minimum value of f on the interval $[0, 2\pi]$?

(A) -2	
$(B) - \sqrt{2}$	~
C −1	
D 0	

5. Let *9* be the function defined by $g(x) = (x^2 - x + 1)e^x$. What is the absolute maximum value of *9* on the interval [-4, 1]?

6.

The graph of f', the derivative of the function f, is shown above. On which of the following open intervals is the graph of f concave down?

D (4,8)

Graph of f'

Let f be the function defined by $f(x) = x^5 - 10x^3$. The graph of f', the derivative of f, is shown above. On which of the following intervals is the graph of f concave up?

$$\begin{array}{l} \textcircled{A} \quad x < -\sqrt{3} \text{ and } 0 < x < \sqrt{3} \\ \hline \textcircled{B} \quad -\sqrt{3} < x < 0 \text{ and } x > \sqrt{3} \\ \hline \textcircled{C} \quad x < -\sqrt{6} \text{ and } x > \sqrt{6} \\ \hline \textcircled{D} \quad -\sqrt{6} < x < \sqrt{6} \end{array}$$

8. The Second Derivative Test cannot be used to conclude that x = 2 is the location of a relative minimum or relative maximum for which of the following functions?

(A)
$$f(x) = \cos{(x-2)}$$
, where $f'(x) = -\sin{(x-2)}$

(B) $f(x) = xe^{-rac{x}{2}}$, where $f'(x) = e^{-rac{x}{2}} - rac{1}{2}xe^{-rac{x}{2}}$

(c)
$$f(x) = x^2 - 4x - 2$$
, where $f'(x) = 2x - 4$

(D) $f(x) = x^3 - 6x^2 + 12x + 1$, where $f'(x) = 3x^2 - 12x + 12$

- (c) f has a relative maximum at x = 6 but not an absolute maximum.
- (D) The absolute maximum of f is at x = 6.

10.

Unit 5 Progress Check: MCQ Part B

The graph of f', the derivative of the continuous function f, is shown above on the interval -8 < x < 7. The graph of f' has horizontal tangent lines at x = -6, x = -3, x = 2, and x = 6.3, and a vertical tangent line at x = -4. On which of the following intervals is the graph of f both decreasing and concave up ?

(A)
$$(-8,0)$$
 and $(4,7)$

igoarrow (-6,-3) and (4,6.3) only

 $igcap_{ extsf{c}}$ (-4,-3) and (4,6.3) only

D (-8,-6), (-3,0), and (6.3,7) only

11.

\boldsymbol{x}	0 < x < 2	x = 2	2 < x < 4	x = 4	4 < x < 6	x = 6	6 < x < 8	x = 8	8 < x < 9
$f'\left(x ight)$	Unknown	0	Negative	0	Negative	DNE	Positive	0	Unknown
f''(r)	Negative	_1	Negative	0	Positive	DNE	Negative	0	Unknown

The function f is continuous on the interval (0,9) and is twice differentiable except at x = 6, where the derivatives do not exist (DNE). Information about the first and second derivatives of f for some values of x in the interval (0,9) is given in the table above. Which of the following statements could be false?

- (B) The graph of f has a point of inflection at x = 4.
- (c) The function f has a relative minimum at x = 6.

(D) The graph of f has a point of inflection at x = 8.

12.

Graph of f'

The graph of f', the derivative of the continuous function f, is shown above on the interval -2 < x < 16. Which of the following statements is true about f on the interval -2 < x < 16?

(A) f has two relative extrema, and the graph of f has three points of inflection.

(B) f has three relative extrema, and the graph of f has three points of inflection.

p
ight) f has five relative extrema, and the graph of f has four points of inflection.