Solving Sinusoidal Functions

\(\left.$$
\begin{array}{|l|l|l|}\hline \text { KNOW } \\
\text { There are multiple } \\
\text { solutions to a trig } \\
\text { equation. }\end{array}
$$ $$
\begin{array}{l}\text { DO } \\
\text { Can find the solutions to a } \\
\text { trig equation in a given } \\
\text { domain. Can use special } \\
\text { triangles when appropriate. }\end{array}
$$ \quad \begin{array}{l}UNDERSTAND

Inverse:

Sine and cosine are not 1-to-1 so the domain must

be restricted. Restrictions come so that they take

on all values of the range once.\end{array}\right\}\)| Vocab \& Notation |
| :--- |
| $\bullet \quad \arcsin x, \arccos x, \arctan x$ |

Note how the domain gets restricted for the inverse functions:

Example: $\sin x=0.8$	Example: $\cos x=0.8$	Example: $\tan x=0.8$

Example (With Calculator) Use algebra to solve the following trig equations:

$$
\frac{1}{2} \sin (\pi(x-0.1))=0.2
$$

Example (Without Calculator)

$$
\left(\tan ^{2}\left(\frac{1}{2}\left(x+\frac{\pi}{3}\right)\right)-1\right)\left(2 \cos \left(\frac{x}{3}\right)+1\right)=0
$$

Practice:

$$
2 \sin ^{2} x-3 \sin x+1=0
$$

$2 \cos \left(\frac{\pi}{5}(x-3)\right)+1=0.5$

$$
\tan ^{2} 2 x+4 \tan 2 x-5=0
$$

$$
4 \cos ^{3}\left(\frac{\pi}{4}(x+1)\right)=3 \cos \left(\frac{\pi}{4}(x+1)\right)
$$

$$
\csc ^{2}\left(\frac{3}{5}\left(x-\frac{\pi}{2}\right)\right)=4
$$

$$
\sec ^{2}\left(\frac{\pi}{12}(x+3)\right)=2
$$

$$
\frac{2}{3} \sec \left(\frac{\pi}{5 x}\right)=1
$$

$$
5 \cot \left(\frac{x^{2}}{6}\right)-3=0
$$

Practice Problems: Zeros of the practice graphing sheet (when available)

