Solving Sinusoidal Functions

KNOW	DO	UNDERSTAND
There are multiple solutions to a trig equation.	Can find the solutions to a trig equation in a given domain. Can use special triangles when appropriate.	<i>Inverse:</i> Sine and cosine are not 1-to-1 so the domain must be restricted. Restrictions come so that they take on all values of the range once.
Vocab & Notation		
• arcsin x, arcc	os x , arctan x	

Note how the domain gets restricted for the inverse functions:

Example (With Calculator) Use algebra to solve the following trig equations:

$$\frac{1}{2}\sin(\pi(x-0.1)) = 0.2$$

Example (Without Calculator)

$$\left(\tan^2\left(\frac{1}{2}\left(x+\frac{\pi}{3}\right)\right) - 1\right)\left(2\cos\left(\frac{x}{3}\right) + 1\right) = 0$$

Practice:

 $2\sin^2 x - 3\sin x + 1 = 0$

$$2\cos\left(\frac{\pi}{5}(x-3)\right) + 1 = 0.5$$

$$\tan^2 2x + 4 \tan 2x - 5 = 0$$

$$4\cos^3\left(\frac{\pi}{4}(x+1)\right) = 3\cos\left(\frac{\pi}{4}(x+1)\right)$$

$$\csc^2\left(\frac{3}{5}\left(x-\frac{\pi}{2}\right)\right) = 4$$

$$\sec^2\left(\frac{\pi}{12}(x+3)\right) = 2$$

$$\frac{2}{3}\sec\left(\frac{\pi}{5x}\right) = 1$$

$$5\cot\left(\frac{x^2}{6}\right) - 3 = 0$$

Practice Problems: Zeros of the practice graphing sheet (when available)