Solving Sinusoidal Functions (Intro)

| KNOW |
| :--- | :--- | :--- |
| There are multiple |
| solutions to a trig |
| equation. |\quad| DO |
| :--- |
| Can find the solutions to a |
| trig equation in a given |
| domain. |\quad| UNDERSTAND |
| :--- |
| Inverse: |
| Sine and cosine are not 1-to-1 so the domain must |
| be restricted. Restrictions come so th they take |
| on all values of the range once. |

Vocab \& Notation

- Inverse trig: $\sin ^{-1}(\quad) ; \arcsin ()$

If $x^{2}=8$ what is x ?

But x^{2}
is NOT

$$
1-\text { to }-1
$$

need to find the
solution
So, when we ask: if $\cos \theta=0.8$ or if $\sin \varphi=0.8$ or if $\tan \beta$, then what is θ, φ and β ? We have the same problem.

$$
\begin{array}{lll}
\cos ^{-1}(\cos \theta=0.8) & \tan \beta=0.8 & \arcsin (\sin \theta=0.8)
\end{array} \quad \begin{array}{lll}
\arctan (\tan \beta=0.8) \\
\theta=\cos ^{-1}(0.8) & \theta=\arcsin 0.8 & \beta=\arctan 0.8 \\
=0.64 \text { or }-0.64 & \theta=0.93,2.21 & \beta=0.67 \\
\theta=0.64+2 \pi n, n \in \mathbb{Z} & \Rightarrow \theta=0.93+2 \pi n & \beta=0.67+\pi n \\
\text { or }-0.64+2 \pi n & \text { or } 2.21+2 \pi n &
\end{array}
$$

When we use the inverse we are only finding one solution. Recognize that there will almost always be a second solution (sometimes three other solutions if we can be positive or negative)

$$
\pi-0^{\circ} .93=2.21
$$

$$
\begin{aligned}
& \text { Example: Solve for } x \\
& 4 \sin ^{2}(\underbrace{\frac{\pi}{2}(x-1)})=1 \\
& 4 \sin ^{2} \theta=1 \\
& \sin \theta= \pm \frac{1}{2} \\
& \Rightarrow \theta= \pm \frac{\pi}{6}+\frac{5 \pi}{6} \\
& \theta= \pm \frac{\pi}{6}+2 \pi n \text { or } \pm \frac{5 \pi}{6}+2 \pi n \\
& \frac{\pi}{2}(x-1)= \pm \frac{\pi}{6}+2 \pi n \text { or } \frac{\pi}{2}(x-1)=\frac{5 \pi}{6}+2 \pi n \\
& x=1 \pm \frac{1}{3}+2 \pi n \text { or } x=1 \pm \frac{5}{3}+2 \pi n, n \in \mathbb{Z}
\end{aligned}
$$

Example: Solve for x

$$
\tan ^{2}\left(2\left(x+\frac{\pi}{3}\right)\right)=5 \tan \left(2\left(x+\frac{\pi}{3}\right)\right)
$$

$\tan ^{2} \theta-5 \tan \theta=0 \rightarrow \tan \theta(\tan \theta-5)=0$

$$
\begin{aligned}
& \tan \theta=0 \quad \text { or } \quad \tan \theta=5 \\
& \Rightarrow \theta=0+\pi n \quad \text { or } \quad \theta=1.37+\pi n, n \in \mathbb{Z} \\
& 2\left(x+\frac{\pi}{3}\right)=\pi n \quad \text { or } \quad 2\left(x+\frac{\pi}{3}\right)=1.37+\pi n \\
& x=\frac{-\pi}{3}+\frac{\pi}{2} n \quad \text { or } \quad x=-0.36+\frac{\pi}{2} n \quad n \in \mathbb{Z}
\end{aligned}
$$

