Steady States and Natural Growth Solutions

1.

a. $y=10 e^{\frac{t}{3}}$
b. Steady state of $z=\frac{2}{3}$ so let $\Gamma=z-\frac{2}{3}$

$$
\frac{d z}{d x}=2-3\left(\Gamma+\frac{2}{3}\right)=-3 \Gamma=\frac{d \Gamma}{d x} \Rightarrow \Gamma=C e^{-3 x}=z-\frac{2}{3}
$$

Set $x=0$ and $z=-2$ to solve $C=-\frac{8}{3}$

$$
z=-\frac{8}{3} e^{-3 x}+\frac{2}{3}
$$

2. We are looking for what p values make $\frac{d p}{d q}=0$ as $q \rightarrow \infty$. For us $(3-q)(4-q) \rightarrow+\infty$ so the differential equation we want is

$$
\frac{d p}{d q}=+(1-p)(2-p)^{2}
$$

Which has steady states at $p=1$ and $p=2$. And the graph of $\frac{d p}{d q}$ will be a cubic that is going from quadrant II to IV. We see that 1 is a stable steady state and 2 is semi-stable.

3. We have that $k=0.023$ and the unstable steady state is $\$ 0$

$$
\begin{aligned}
\frac{d c}{d t}=0.023 c \Rightarrow & c=C e^{0.023 t}, \quad c(0)=3=C \\
& c(t)=3 e^{0.023 t} \\
& c(20)=\$ 4.75
\end{aligned}
$$

4. There is a stable steady state at $T=20$ seconds.

$$
\frac{d T}{d t}=k(T-20), \quad T(0)=300, \quad T(12)=45
$$

Let $\Gamma=T-20$ and so

$$
\frac{d T}{d t}=k \Gamma=\frac{d \Gamma}{d t} \Rightarrow \Gamma=C e^{k t}=T-20
$$

We find $C=280$ and we can solve for k

$$
\begin{gathered}
k=\ln \left(\frac{25}{280}\right) \cdot \frac{1}{12}=-0.201 \\
T(t)=280 e^{-0.201 t}+20 \\
T(x)=30 \\
\Rightarrow x=\ln \left(\frac{1}{28}\right) \cdot \frac{1}{-0.201}=16.6 \text { weeks }
\end{gathered}
$$

