Steady State Practice

Check your solutions using the slope field: geogebra.org/m/W7dAdgqc

1. Find the steady states of all the following functions and state their stability
a.

$$
\frac{d y}{d t}=y(3-y)^{2}
$$

b.

$$
\frac{d y}{d t}=t y-2 t
$$

c.

$$
\frac{d y}{d t}=y(y-1)^{2}(2-y)(y-3)
$$

2. Write a differential equation for $\frac{d y}{d t}$ that has the stated steady states
a. Stable steady state at $y=5$ and unstable steady state at $y=0$.
b. Stable steady state at $y=-3$, a semi-stable steady state $y=4$, and unstable steady state at $y=9$
c. Sem-stable steady states at $y=1$ and $y=6$, stable steady state at $y=2$ and unstable steady state at $y=-1$.
3. A differential equation $\frac{d y}{d t}=f(y)$ has exactly 2 steady states. Show that they cannot both be stable or unstable.
4. Determine the steady states and stability of the following differential equation.

$$
\frac{d M}{d r}=\frac{\left(M^{2}-4\right)(r+1)}{r^{2}+1}
$$

5. From the following slope fields, make a differntial equation that could match it given the appropriate variables!
a. The solution curves are for the differential $\frac{d F}{d b}$

b. The solution curves are for the differential $\frac{d z}{d x}$

