Limits of Trig Functions

Goal:

- Understands the importance of the radian when considering trig rates of change.

Terminology:

- Radian

Discussion: What is a degree? What is a radian?

Recall some important trig identities:

$\sin ^{2} x+\cos ^{2} x=1$	$\tan x=\frac{\sin x}{\cos x}$	$\frac{1}{\sin x}=\csc x$
$\sin (-x)=-\sin x$	$\frac{1}{\tan x}=\cot x$	$\frac{1}{\cos x}=\sec x$
$\cos (-x)=\cos x$	$\sin (A+B)=\sin A \cos B+\sin B \cos A$	$\cos (A+B)=\cos A \cos B-\sin A \sin B$

And the graphs of $\sin x$ and $\cos x$ look as follows.

We want to study the calculus of trig functions which begins with limits. No matter the unit of measurement we have that

$$
\lim _{x \rightarrow 0} \sin x=0
$$

It may seem like it doesn't matter between radian or degree, but for almost every other value of $c \in \mathbb{R}$ we have that

$$
\lim _{x \rightarrow c(\mathrm{rad})} \sin x \neq \lim _{x \rightarrow c(\mathrm{deg})} \sin x
$$

So very clearly the way we measure the angle is important and makes a difference. The limit we are going to investigate is

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

Notice that around $x=0$, when using radians, $\sin x \approx x$, so we should expect the limit to be around 1. Typically this is shown by "squeezing" the function $\frac{\sin x}{x}$ between the functions $y=1$ and $y=\cos x$ using geometry (whose limits are both 1 as $x \rightarrow 0$). But we can show this graphically:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Note that this implies $\lim _{x \rightarrow 0} \frac{x}{\sin x}=1$ too.

Example: Evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x}{x^{2}-3 x}
$$

Practice: Evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{\sin A x}{B x}
$$

Practice: Evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{\tan 5 x}
$$

Example: Evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}
$$

Practice: Evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\sec x}{\sin x}
$$

Practice Problems: 7.1 \# 1-38 (what you need)
\# 40-44

