Derivatives of Inverse Trig Functions

Goal:

- Understands how to find the derivative of $\arcsin x$ and $\arctan x$

Terminology:

- "Arc"-function

Discussion: What is $\sin (\arcsin x) ?$ What is $\cos (\arcsin x) ?$

We are going to determine the derivative of arcsin and arctan (arguably the most important inverse trig functions)

Example: Find

$$
\frac{d}{d x} \arcsin x
$$

Practice: Find

$$
\frac{d}{d x} \arctan x
$$

Practice: Determine $\frac{d y}{d x}$ for the following function

$$
y=\arcsin (\sqrt{x})+\arctan (2 x)
$$

Example: Solve the antiderivative

$$
\int \frac{3}{2+4 x^{2}} d x
$$

Practice: Solve the antiderivative

$$
\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x
$$

Practice: Solve the antiderivative

$$
\int \frac{\sqrt{x}}{1+x^{3}} d x
$$

Practice Problems: 7.6 \# 1 (do what you need but skip $\cos ^{-1} x$), 2-5
11.2 \# 3cde
11.3 \# 3r

