Derivatives of Inverse Trig Functions

Goal:

• Understands how to find the derivative of $\arcsin x$ and $\arctan x$

Terminology:

"Arc"-function

Discussion: What is $\sin(\arcsin x)$? What is $\cos(\arcsin x)$?

We are going to determine the derivative of arcsin and arctan (arguably the most important inverse trig functions)

Example: Find

$$\frac{d}{dx} \arcsin x$$

Practice: Find

$$\frac{d}{dx}$$
 arctan x

Practice: Determine $\frac{dy}{dx}$ for the following function $y = \arcsin(\sqrt{x}) + \arctan(2x)$

$$y = \arcsin(\sqrt{x}) + \arctan(2x)$$

Example: Solve the antiderivative

$$\int \frac{3}{2+4x^2} dx$$

Unit 9: Trig Derivatives

Practice: Solve the antiderivative

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} dx$$

 $\frac{d}{dx} \arcsin x$: June 1

Practice: Solve the antiderivative

$$\int \frac{\sqrt{x}}{1+x^3} dx$$