Derivatives of Inverse Trig Functions

Goal:

- Understands how to find the derivative of $\arcsin x$ and $\arctan x$

Terminology:

- "Arc"-function

Discussion: What is $\sin (\arcsin x)$? What is $\cos (\arcsin x)$?

If $y=\sin x$ takes an angle x and outputs the ratio of side lengths. Then $y=\arcsin x$ does the inverse and takes a ratio x and outputs an angle y. Not that in radians the angle y is equal to the arclength on the unit circle, hence arc sine.

$$
\sin (\arcsin x)=x
$$

Since arcsin and sine are inverses.
If we consider $y=\arcsin x$ then the ratio of opposite to hypotenuse sides $\frac{x}{1}$ and the angle is y. Then the adjacent side is $\sqrt{1-x^{2}}$ and so

$$
\cos y=\frac{\sqrt{1-x^{2}}}{1}=\sqrt{1-x^{2}}
$$

Alternatively, note that $\cos x=\sqrt{1-\sin ^{2} x}$ so

$$
\cos (\arcsin x)=\sqrt{1-\sin ^{2}(\arcsin x)}=\sqrt{1-x^{2}}
$$

$$
\sqrt{1-x^{2}}
$$

We are going to determine the derivative of arcsin and arctan (arguably the most important inverse trig functions)
Example: Find

$$
\frac{d}{d x} \arcsin x
$$

Set $y=\arcsin x$ and then take the sine of both sides $\sin y=x$. Find $\frac{d}{d x}$ implicitly

$$
\begin{gathered}
\cos y \cdot \frac{d y}{d x}=1 \\
\frac{d y}{d x}=\frac{1}{\cos y}
\end{gathered}
$$

Substitute for y :

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{\cos (\arcsin x)}=\frac{1}{\sqrt{1-x^{2}}} \\
& \Rightarrow \int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+C
\end{aligned}
$$

Practice: Find

$$
\frac{d}{d x} \arctan x
$$

Set $y=\arctan x$ and then take the tangent of both sides and find $\frac{d}{d x}$ implicitly

$$
\begin{aligned}
& y=\arctan x \Rightarrow \tan y=x \\
& \sec ^{2} y \cdot \frac{d y}{d x}=1 \\
& \frac{d y}{d x}=\cos ^{2} y \\
& =\cos ^{2} \arctan x
\end{aligned}
$$

Using a triangle, if $\tan y=x$ then the opposite side is x and the adjacent side is 1 , so the hypotenuse is $\sqrt{x^{2}+1}$

1

$$
\begin{gathered}
\cos y=\frac{1}{\sqrt{x^{2}+1}} \\
\Rightarrow \frac{d}{d x} \arctan x=\frac{1}{x^{2}+1} \\
\Rightarrow \int \frac{d x}{x^{2}+1}=\arctan x+C
\end{gathered}
$$

Practice: Determine $\frac{d y}{d x}$ for the following function

$$
y=\arcsin (\sqrt{x})+\arctan (2 x)
$$

Use chain rule

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2 \sqrt{x}}+\frac{2}{4 x^{2}+1} \\
& =\frac{1}{2 \sqrt{x-x^{2}}}+\frac{2}{4 x^{2}+1}
\end{aligned}
$$

Example: Solve the antiderivative

$$
\int \frac{3}{2+4 x^{2}} d x
$$

Recognize that it has the form $\frac{a}{1+(b x)^{2}}$ which is close to arctan. Factor out the 3 and the 2

$$
\int \frac{3}{2+4 x^{2}} d x=\frac{3}{2} \int \frac{d x}{1+2 x^{2}}
$$

We want $2 x^{2}$ to be a perfect square so let $u^{2}=2 x^{2} \Rightarrow 2 u d u=4 x d x$

$$
=\frac{3}{2} \int \frac{1}{1+u^{2}} \cdot \frac{2 u d u}{4 x}
$$

We have $u=\sqrt{2} x$

$$
\begin{aligned}
& =\frac{3}{2} \int \frac{1}{1+u^{2}} \cdot \frac{1}{\sqrt{2}} d u=\frac{3}{2 \sqrt{2}} \arctan u+C \\
& =\frac{3}{2 \sqrt{2}} \arctan \sqrt{2} x+C
\end{aligned}
$$

Practice: Solve the antiderivative

$$
\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x
$$

This form looks a bit like arcsin where we have $\frac{a}{\sqrt{1-(b x)^{2}}}$. We want the $e^{2 x}$ to be a perfect square so let $u^{2}=e^{2 x}$, then $u d u=e^{2 x} d x$. Note that $u=e^{x}$

$$
\begin{aligned}
\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x & =\int \frac{u}{\sqrt{1-u^{2}}} \cdot \frac{u}{e^{2 x}} d u \\
& =\int \frac{1}{\sqrt{1-u^{2}}} \cdot \frac{u^{2}}{u^{2}} d u \\
& =\arcsin u+C \\
& =\arcsin e^{x}+C
\end{aligned}
$$

Practice: Solve the antiderivative

$$
\int \frac{\sqrt{x}}{1+x^{3}} d x
$$

Recognize that this kinda looks like it has the form $\frac{a}{1+(b x)^{2}}$ which is close to arctan. It's not there yet but we want x^{3} to be a perfect square so let $u^{2}=x^{3}$ that way $2 u d u=3 x^{2} d x$

$$
\int \frac{\sqrt{x}}{1+x^{3}} d x=\int \frac{\sqrt{x}}{1+u^{2}} \cdot \frac{2 u}{3 x^{2}} d u
$$

We have $\frac{\sqrt{x}}{x^{2}}=x^{-\frac{3}{2}}=\frac{1}{u}$

$$
\begin{aligned}
& =\int \frac{1}{1+u^{2}} \cdot \frac{2 u}{3 u} d u \\
& =\frac{2}{3} \arctan u+C \\
& =\frac{2}{3} \arctan x^{\frac{3}{2}}+C
\end{aligned}
$$

Practice Problems: 7.6 \# 1 (do what you need but skip $\cos ^{-1} x$), 2-5

