Trig Identities and Their Use in Calculus

Pythagorean Identities

- $\cos^2 x + \sin^2 x = 1$
- $\tan^2 x + 1 = \sec^2 x$
- $\cot^2 x + 1 = \csc^2 x$

Derived from the coordinates on a unit circle:

 $x^2 + y^2 = 1 \Longrightarrow \cos^2 \theta + \sin^2 \theta = 1$

and then divide both sides by $\sin^2 \theta$ or $\cos^2 \theta$ to get the other two.

Usage in Calculus:

Aside from the general times you will often see $\sin^2 x + \cos^2 x$ and replace with 1, these are vital to solve integrals.

We can replace $\sin^3 x \cos^n x = \sin x \cdot (1 - \cos^2 x) \cdot \cos^n x$ which has 1 sine function which is really nice or $\cos^5 x \sin^m x = \cos x \cdot (1 - \sin^2 x) \sin^m x$ which also only has 1 cosine function which will be really nice.

Practice: Use the Pythagorean trig identity to put the following in terms of a single sine or cosine function times a bunch of the other.

$\sin^5 x \cos^7 x$	$\sin^5 x \cos^7 x$ (different way than the previous problem)
sin ⁵ x cos ⁸ x	$\sin^4 x \cos^3 x$

Also, in calculus, $\tan^2 x$ is not as nice as $\sec^2 x$, so oftentimes we will replace $\tan^2 x$ with $\sec^2 x - 1$.

There is also the very nice property of these identities that they take a sum of squares and turn it into another square. Multiplying by a constant square we get

- $a^2 \sin^2 x + a^2 \cos^2 x = a^2$
- $a^2 \tan^2 x + a^2 = a^2 \sec^2 x$

From these we get three general shapes:

$$(a \cdot \cos x)^2 = a^2 - (a \cdot \sin x)^2 \Longrightarrow \frac{v^2}{2} = a^2 - u^2$$
$$(a \cdot \sec x)^2 = a^2 + (a \cdot \tan x)^2 \Longrightarrow \frac{v^2}{2} = a^2 + u^2$$
$$(a \cdot \tan x)^2 = (a \cdot \sin x)^2 - a^2 \Longrightarrow \frac{v^2}{2} = u^2 - a^2$$

Hence, we can make a trig substitution to change a sum or difference of squares into a perfect square. For example: $\sqrt{4 - x^2}$ we can set $x = 2 \sin \theta$ then we get $\sqrt{4 - 4 \sin^2 \theta} = 2|\cos \theta|$

Practice: Use Pythagorean trig identities to reduce the following into a perfect square. You may need to complete the square to do so.

$\sqrt{9-x^2}$	$\sqrt{x^2 - 16}$
$\sqrt{x^2 + 25}$	$\sqrt{x^2 - 2x + 5}$
$\sqrt{x^2 + 4x - 12}$	$\sqrt{-x^2+8x-7}$

Sum of Angles

- sin(A + B) = sin A cos B + sin B cos A
- $\cos(A+B) = \cos A \cos B \sin A \sin B$

Derived from looking at a compound of two triangles (see videos)

Usage in Calculus:

This will be used early in calculus to derive the derivative of sine and cosine. Use the identity above to separate the following expressions into a sum of sine and cosines.

$\frac{\sin(x+h)}{h}$	$\frac{\cos(x+h)}{h}$
n.	n

Double Angles

- $\sin(2A) = 2\sin A \cos A$
- $\cos(2A) = \cos^2 A \sin^2 A$

Derived from the sum of angles by letting B = A.

Note that $\cos 2A = 1 - 2\sin^2 A = 2\cos^2 A - 1$ by using the Pythagorean trig identity.

Usage in Calculus:

We typically use the half angle formulas (rearranged versions of the cosine identity) that allow us to reduce the power of sine and cosine.

$$\cos^2 A = \frac{1 + \cos 2A}{2}$$
$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

For example: it is beneficial to change $\sin^2 x \cos^2 x = \frac{1}{4}\sin^2 2x = \frac{1}{8}(1 - \cos 4x)$ or we can change to $\cos^4 x = \frac{1}{4}(1 + \cos 2x)^2 = \frac{1}{4}(1 + 2\cos 2x + \cos^2 2x) = \frac{1}{4} + \frac{1}{2}\cos 2x + \frac{1}{8}(1 + \cos 4x)$

Practice: Use the double angle identity of sine and cosine to reduce the powers to a single power of sine or cosine OR until we get an odd power of sine or cosine and then use a Pythagorean identity.

