Trig Identities and Their Use in Calculus
Pythagorean Identities

- $\cos ^{2} x+\sin ^{2} x=1$
- $\tan ^{2} x+1=\sec ^{2} x$
- $\cot ^{2} x+1=\csc ^{2} x$

Derived from the coordinates on a unit circle:

$$
x^{2}+y^{2}=1 \Rightarrow \cos ^{2} \theta+\sin ^{2} \theta=1
$$

and then divide both sides by $\sin ^{2} \theta$ or $\cos ^{2} \theta$ to get the other two.

Usage in Calculus:
Aside from the general times you will often see $\sin ^{2} x+\cos ^{2} x$ and replace with 1 , these are vital to solve integrals.

We can replace $\sin ^{3} x \cos ^{n} x=\sin x \cdot\left(1-\cos ^{2} x\right) \cdot \cos ^{n} x$ which has 1 sine function which is really nice or $\cos ^{5} x \sin ^{m} x=\cos x \cdot\left(1-\sin ^{2} x\right) \sin ^{m} x$ which also only has 1 cosine function which will be really nice.

Practice: Use the Pythagorean trig identity to put the following in terms of a single sine or cosine function times a bunch of the other.

$\sin ^{5} x \cos ^{7} x$	$\sin ^{5} x \cos ^{7} x$ $\sin x\left(1-\cos ^{2} x\right)^{2} \cos ^{7} x$
$\sin ^{5} \times\left(1-\sin ^{2} x\right)^{3} \cos x$	
$\sin x\left(1-\cos ^{2} x\right)^{2} \cos ^{8} x$	$\sin ^{8} x \cos ^{8} x$

Also, in calculus, $\tan ^{2} x$ is not as nice as $\sec ^{2} x$, so oftentimes we will replace $\tan ^{2} x$ with $\sec ^{2} x-1$.

There is also the very nice property of these identities that they take a sum of squares and turn it into another square. Multiplying by a constant square we get

- $a^{2} \sin ^{2} x+a^{2} \cos ^{2} x=a^{2}$
- $a^{2} \tan ^{2} x+a^{2}=a^{2} \sec ^{2} x$

From these we get three general shapes:

$$
\begin{aligned}
& (a \cdot \cos x)^{2}=a^{2}-(a \cdot \sin x)^{2} \Rightarrow v^{2}=a^{2}-u^{2} \\
& (a \cdot \sec x)^{2}=a^{2}+(a \cdot \tan x)^{2} \Rightarrow v^{2}=a^{2}+u^{2} \\
& (a \cdot \tan x)^{2}=(a \cdot \sin x)^{2}-a^{2} \Rightarrow v^{2}=u^{2}-a^{2}
\end{aligned}
$$

Hence, we can make a trig substitution to change a sum or difference of squares into a perfect square. For example: $\sqrt{4-x^{2}}$ we can set $x=2 \sin \theta$ then we get $\sqrt{4-4 \sin ^{2} \theta}=2|\cos \theta|$

Practice: Use Pythagorean trig identities to reduce the following into a perfect square. You may need to complete the square to do so.

$\sqrt{x^{2}+4 x-12}$	$-\left(x^{2}-8 x\right)-7$
$\sqrt{(x+2)^{2}-16}$ let $x+2=4 \sec \theta$	$\sqrt{-x^{2}+8 x-7}$
$\sqrt{\mid \operatorname{csce}^{2} \theta-16}=4\|\tan \theta\|$	let $x-4=3 \sin \theta$
$\sqrt{9-9 \sin ^{2} \theta}=3\|\cos \theta\|$	

Sum of Angles

- $\sin (A+B)=\sin A \cos B+\sin B \cos A$
- $\cos (A+B)=\cos A \cos B-\sin A \sin B$

Derived from looking at a compound of two triangles (see videos)
Usage in Calculus:
This will be used early in calculus to derive the derivative of sine and cosine. Use the identity above to separate the following expressions into a sum of sine and cosines.

$\frac{\sin (x+h)}{h}$	
$\sin x \cosh +\cos x \sinh$	
h	$\cos x \cosh (x+h)$
h	$\sin x \sin h$

Double Angles

- $\sin (2 A)=2 \sin A \cos A$
- $\cos (2 A)=\cos ^{2} A-\sin ^{2} A$

Derived from the sum of angles by letting $B=A$.
Note that $\cos 2 A=1-2 \sin ^{2} A=2 \cos ^{2} A-1$ by using the Pythagorean trig identity.

Usage in Calculus:
We typically use the half angle formulas (rearranged versions of the cosine identity) that allow us to reduce the power of sine and cosine.

$$
\begin{aligned}
& \cos ^{2} A=\frac{1+\cos 2 A}{2} \\
& \sin ^{2} A=\frac{1-\cos 2 A}{2}
\end{aligned}
$$

For example: it is beneficial to change $\sin ^{2} x \cos ^{2} x=\frac{1}{4} \sin ^{2} 2 x=\frac{1}{8}(1-\cos 4 x)$ or we can change to

$$
\cos ^{4} x=\frac{1}{4}(1+\cos 2 x)^{2}=\frac{1}{4}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right)=\frac{1}{4}+\frac{1}{2} \cos 2 x+\frac{1}{8}(1+\cos 4 x)
$$

Practice: Use the double angle identity of sine and cosine to reduce the powers to a single power of sine or cosine OR until we get an odd power of sine or cosine and then use a Pythagorean identity.

