Trig Identity Proof

Pythagorean Identities

- $\cos ^{2} x+\sin ^{2} x=1$
- $\left.\tan ^{2} x+1=\sec ^{2} x\right\}$ (ot $\left.2 x+1=\csc ^{2} x\right\}$ derived from $\tan x=\frac{\sin x}{\cos x}$

Proof:
Derived from coordinates on a unit circle:

Step 1:
Show that $x=\cos \theta, y=\sin \theta: \rightarrow$ SOM CAM TOM

$$
\begin{aligned}
\cos \theta & =\frac{x}{1} & \sin \theta & =\frac{y}{1} \\
& =x & & =y
\end{aligned}
$$

Step 2:
Substitute into the equation based on Pythagorean Theorem $\left(x^{2}+y^{2}=1\right)$:

$$
\begin{aligned}
& x^{2}+y^{2}=1 \\
& \cos ^{2} \theta+\sin ^{2} \theta=1 \quad \Rightarrow \quad \begin{array}{l}
1+\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)=\frac{1}{\cos ^{2} \theta} \\
1+\tan ^{2} \theta=\sec ^{2} \theta
\end{array} \\
& \\
& \begin{array}{l}
\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \\
\cot ^{2} \theta+1=\csc ^{2} \theta
\end{array}
\end{aligned}
$$

Sum of Angles

- $\sin (A+B)=\sin A \cos B+\sin B \cos A$
- $\cos (A+B)=\cos A \cos B-\sin A \sin B$

Proof:
Derived from a compound of triangles:

Find the sides opposite and adjacent to $\angle B$ based on $\cos A$:
Based on the previous example, we can generalize the relationship into:

In this case:

Step 4:
Find the angle equal to $\angle B$ based on similar triangle:

$$
\begin{aligned}
& \because \angle B+\angle B^{*}+\frac{\pi}{2}=\pi \\
& \angle 1+\angle B^{*}+\frac{\pi}{2}=\pi \\
& \therefore \angle B=\angle 1
\end{aligned}
$$

Step 5:

Use the same method as step 3 to find the opposite and adjacent sides of $\sin A$:

Step 6: Conclusion

```
\therefore\operatorname{sin}(A+B)=\operatorname{sin}A\operatorname{cos}B+\operatorname{cos}A\operatorname{sin}B
    cos}(A+B)=\operatorname{cos}A\operatorname{cos}B-\operatorname{sin}A\operatorname{sin}
```


Double Angle

- $\sin (2 A)=2 \sin A \cos A$
- $\cos (2 A)=\cos ^{2} A-\sin ^{2} A$

Proof:
Derived from the sum of angles identity by letting $B=A$:

$$
\begin{aligned}
\sin (2 A)=\sin (A+A) & =\sin A \cos A+\sin A \cos B \\
& =2 \sin A \cos A \\
\cos (2 A)=\cos (A+A) & =\cos ^{A} \cdot \cos A-\sin A \sin A \\
& =\cos ^{2} A-\sin ^{2} A
\end{aligned}
$$

Note that $\cos 2 A=1-2 \sin ^{2} A=2 \cos ^{2} A-1$ by using Pythagorean Identity:

$$
\begin{aligned}
\cos (2 A)=\cos ^{2} A-\sin ^{2} A & =1-\sin ^{2} A-\sin ^{2} A \\
& =1-2 \sin ^{2} A \\
1-2 \sin ^{2} A & =\cos (2 A) \\
2 \sin ^{2} A & =-\cos (2 A)+1 \\
\sin ^{2} A & =\frac{1-\cos (2 A)}{2}
\end{aligned}
$$

$$
\begin{aligned}
\cos (2 A)=\cos ^{2} A-\sin ^{2} A & =\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
& =2 \cos ^{2} A-1 \\
2 \cos ^{2} A-1 & =\cos (2 A) \\
2 \cos ^{2} A & =1+\cos (2 A) \\
\cos ^{2} A & =\frac{1+\cos (2 A)}{2}
\end{aligned}
$$

