Trig Modelling Practice

The following problems are snippets from the textbook with the core function erased. Determine the general equation for them, use the equation to predict a value, and use the equation to solve a problem.
1.
a. A point on saw blade experiences motion around a circle with radius r. It makes n rotations per second. The blade sits so that the center is d units below the top of the table. Determine an equation for the height of the point at time t.

$$
\begin{aligned}
& T=\frac{1}{n} \text { sec midline is }-d \quad \text { amp }=r \\
& b=2 \pi n
\end{aligned}
$$

$$
H(t)=r \cos (2 \pi n \cdot t)-d
$$

t in seconds
b. If the radius is 10 cm and it sits 8 cm below the top of the table, in one rotation will the point be above the table?

$$
\begin{aligned}
& r=10 \quad d=8 \quad H(t)>0 \\
& 10 \cos (2 \pi n(t)-8>0 \Rightarrow \cos \theta=4 / 5 \\
& \Rightarrow \theta= \pm 0.643+2 \pi N=2 \pi n t \quad, N \in \mathbb{Z} \\
& \\
& \quad \pm \frac{0.102}{n}+\frac{N}{n}=t
\end{aligned}
$$

2.
a. A satellite follows a sinusoidal path over the Earth in orbit. It takes the satellite m minutes to orbit the Earth. On one side of the Earth, it reaches a maximum height of $h_{1}(\mathrm{~km})$ and on the opposite side is reaches a min height of $h_{0}(\mathrm{~km})$. At t_{0} minutes after noon, the satellite is at the min height. Determine an equation for the height of the satellite at time t.

$$
\begin{gathered}
T=m \quad(\min) \quad H_{\max }=h_{1} \quad H_{\min }=h_{0} \quad ; \quad t_{0} \text { after 12pm } \\
b=\frac{2 \pi}{m} \quad h_{0} \\
H(t)=\frac{h_{0}-h_{1}}{2} \cos \left(\frac{2 \pi}{m}\left(t-t_{0}\right)\right)+\frac{h_{0}+h_{1}}{2}
\end{gathered}
$$

t is time after noon in min $t=0$ is 12 pm
b. If $m=200$ minutes, $h_{1}=300 \mathrm{~km}$ and $h_{0}=220 \mathrm{~km}$, and at $12: 47 \mathrm{pm}$ the satellite is at the min height, determine the height of the satellite at $5: 10 \mathrm{pm}$.

$$
\begin{array}{r}
t_{0}=47 \quad t=5.60+10=310 \\
H(t)=-40 \cos \left(\frac{\pi}{100}(t-47)\right)+260 \\
\Rightarrow H(310)=275.9 \mathrm{~km}
\end{array}
$$

c. Determine the intervals of time from midnight to $6: 00 \mathrm{am}$ of that day that the satellite was more then 280 km above the Earth.

$$
H(t)=280=-40 \cos \left(\frac{\pi}{100}(t-47)\right)+260
$$

$\cos \frac{\pi}{100}(t-47)=-\frac{1}{2} \Rightarrow \frac{\pi}{100}(t-47)= \pm \frac{2 \pi}{3}+2 \pi n$

want $t \in[-720,-360]$

Above 280 kn between 12:34am-1:40 an and 3:54an-5:00 an
3.
a. The population of foxes in a region cycles from a minimum P_{0} to maximum P_{1} during a m month period (that is from P_{0} to P_{1} in m months). The population starts at P_{8} on the first of month m_{0}. Determine an equation for the population of foxes at time t in months.

$$
P(t)=\frac{P_{1}-P_{0}}{2} \cos \left(\frac{\pi}{m}\left(t-m_{0}\right)\right)+\frac{P_{1}+P_{0}}{2}
$$

halt period m time t in months

$$
\begin{aligned}
& t=1 \equiv \operatorname{Jan} 1^{s t} \\
& t=0 \equiv \operatorname{Sec} 1^{\text {st. }}
\end{aligned}
$$

$$
\Rightarrow T=2 m \quad b=\frac{\pi}{m}
$$

b. If $P_{0}=600$ and $P_{1}=1600, m=12$ months, and m_{0} is March 2020, determine the population of foxes on June $28^{\text {th }}, 2021$.

$$
P(t)=500 \cos \left(\frac{\pi}{12}(t-3)\right)+1100
$$

$$
P(18.93)=842 \text { foxes }
$$

June $28^{\text {th }} 12021 \Rightarrow t=18.93$
c. Determine the approximate dates between Jan 1, 2020 to December 31, 2024, the population of foxes is greater than 1000.

$$
t \in[1,61) \quad<5 \text { years }
$$

$$
P(t)=1000=500 \cos \left(\frac{\pi}{12}(t-3)\right)+1100
$$

$$
\frac{\pi}{12}(t-3)= \pm 1.77+2 \pi n \Rightarrow t=9.77 \text { or }-3.77+24 n
$$

$$
t-3= \pm 6.77+24 n
$$

$P(t) \geqslant 1000$ from $\operatorname{Jon} 1,2020-\operatorname{Sep} 23,2020$ and
Any 7,2021 - $\operatorname{sep} 23,2022$ and
Ans 7, 2023 -sep 23,2024
4.
a. The altitude of the Sun follows a sinusoidal path. The maximum altitude it reaches is θ_{1} degrees above the horizon at time t_{1} (hours). The lowest it reaches is θ_{2} degrees below the horizon at time t_{2} (hours). Determine an equation for the height of the Sun as a function of time t.

$$
\begin{aligned}
& T=\left|t_{2}-t_{1}\right| \cdot 2 \\
& b=\frac{\pi}{\left|t_{2}-t_{1}\right|}
\end{aligned}
$$

t is in hows. $t=0$ is midnyht

$$
A(t)=\frac{\theta_{1}-\theta_{2}}{2} \cos \left(\frac{\pi}{\left|t_{2}-t_{1}\right|}\left(t-t_{1}\right)\right)+\frac{\theta_{1}+\theta_{2}}{2}
$$

b. If $\theta_{1}=38^{\circ}$ at $1: 20 \mathrm{pm}$ on March 14,2021 and $\theta_{2}=-42^{\circ}$ at $1: 20 \mathrm{am}$ on Match 15,2021 . Then what was the height of the Sun at 10 am on March 15?
$t=0$ is midnight on mar $15 \Rightarrow t_{2}=1 . \overline{3}$

$$
t_{1}=-10 . \overline{6}
$$

$$
A(t)=40 \cos \left(\frac{\pi}{12}(t+10.6)\right)-2
$$

$$
A(10)=23.7^{\circ}
$$

c. Determine the time of sunrise and sunset on March 15, 2021.

$$
\begin{aligned}
& A(t)=0=40 \cos \left(\frac{\pi}{12}(t+10 . \overline{6})\right)-2 \\
& \frac{\pi}{12}(t+10 . \overline{6})= \pm 1.52+2 \pi n \\
& t+10 . \overline{6}= \pm 5.81+24 n \\
& t=-4.86 \text { or }-16.48+24 n \\
& \text { set rise } \\
& \equiv 17.14 \text { or } 7.52
\end{aligned}
$$

\Rightarrow rise e 7:31 an and sets e 7:08 pm
5.
a. Daily temperature follows a sinusoidal curve. In Vancouver, it reaches a minimal temperature of T_{0} degrees Celsius at time t_{0} and a maximal temperature of T_{1} at time t_{1}. Determine an equation for the temperature as a function of the time t.

$$
T(t)=\frac{T_{1}-T_{0}}{2} \cos \left(\frac{\pi}{t_{1}-t_{0} l}\left(t-t_{1}\right)\right)+\frac{T_{1}+T_{0}}{2}
$$

time in hows $t=0$ is midnight
b. If $T_{0}=-1^{\circ} \mathrm{C}$ at 6:00 am and $T_{1}=9^{\circ} \mathrm{C}$ at 7:00 pm. Then what was the temperature at 10:30 am and 10:30 pm?

$$
\begin{aligned}
& T(t)=5 \cos \left(\frac{\pi}{13}(t-19)\right)+4 \\
& T(10.5)=1.7^{\circ} \mathrm{C} \subset 10: 30 \mathrm{~cm} ; T(22.5)=7.3^{\circ} \mathrm{C} \\
& \quad \subset \quad 10: 30 \mathrm{pm}
\end{aligned}
$$

c. Determine the interval of times in the day when the temperature is above $5^{\circ} \mathrm{C}$.

$$
\begin{aligned}
T(t)=5 & =5 \cos \left(\frac{\pi}{13}(t-19)\right)+4 \\
\frac{\pi}{13}(t-19) & = \pm 1.37+2 \pi n \\
t-19 & = \pm 5.67+26 n \\
t & =24.67 \text { or } 13.33+26 n
\end{aligned}
$$

The temp is above $5^{\circ} \mathrm{C}$ from $1: 20 \mathrm{pm}$ until a bit after midnight (12:4 0am the next day)
17. Turn on at $T_{0}(\min) ;$ turn of $C T_{1}$ (max) tales m min to heat up

$$
T(t)=\frac{T_{1}-T_{0}}{2} \cos \left(\frac{\pi}{m} t\right)+\frac{T_{0}+T_{1}}{2}
$$

ts ask how long in a cycle is the room above/below τ degrees.
18. H_{1} is max height, H_{0} is min height, bounces n times in 10 seconds.

$$
H(t)=\frac{H_{1}-H_{0}}{2} \cos \left(\frac{\pi n}{5} \quad t\right)+\frac{H_{1}+H_{0}}{2}
$$

\rightarrow height above the floor at tree t in sec.
\rightarrow ask what \% of the time is the spring above or below Height h.
19.) Radms $=R$, $T=$ to seconds ; height get on is $h(m)$

$$
H(t)=-R \cos \left(\frac{2 \pi}{t_{0}} t\right)+(R+h)
$$

\rightarrow heyst of the rider t sec after getting on.
A ash how long it takes to get from height ho to h_{1}.
20. Blade $=b(m)$ max heyht at Brae $=H_{\text {max }}$ makes n rotation $/ \mathrm{min}$

$$
H(t)=b \cos (2 \pi n \cdot t)+\left(H_{\max }-b\right)
$$

$\varphi \in$ in min.
\rightarrow ask for how long in a 1 min span is the blade above/below h (m).
21. $\operatorname{Min} \operatorname{Temp}=T_{0}$ on date $d_{0} ; \max \operatorname{tenp}=T_{1}$ on date d_{1}.

$$
T(d)=\frac{T_{1}-T_{0}}{2} \cos \left(\frac{\pi}{\left|d_{1}-d_{0}\right|} \cdot d\right)+\frac{T_{1}+T_{0}}{2}
$$

\& ask which day the temp was between τ_{1} and τ_{2} here $a=1$ is Jonlst and $d=0$ is $\operatorname{Dec} 3157$.
22. period $=T$ iyears) max return $=P_{1}$ in year t_{1}, min return of P_{0}

$$
P(t)=\frac{P_{1}-P_{0}}{2} \cos \left(\frac{2 \pi}{T}\left(t-t_{1}\right)\right)+\frac{P_{1}+P_{0}}{2}
$$

\$ ash what years they have a positive return.
23. Make n turns in a to interval distance of a turn is r (m)

$$
H(t)=r \sin \left(\frac{2 \pi n}{t_{0}} \cdot t\right)
$$

hoviz. distance of skier away from midline
ask how a new skiers parameters would be different vs a vetern.

