
6.2 -Antiderivatives using u-substitution

Mr. Guillen’s AP Calculus

Recall that we definied the antiderivative of f as∫
f(x)dx

To find this antiderivative, we had to work backwords to find a function F such that
d

dx
F = f . This is

easy enough when the function is not that complex and has a basic antiderivative. By basic, I mean a single
polynomial, exponenential, or trig function. For reference, these are the basic antiderivatives you need to be
familiar with.

d

dx
xn = nxn−1 =⇒

∫
xn−1dx =

xn

n
, n 6= 0

d

dx
lnx =

1

x
=⇒

∫
1

x
dx = lnx

d

dx
bx = bx ln b =⇒

∫
bxdx =

bx

ln b

d

dx
sinx = cosx =⇒

∫
cosxdx = sinx

d

dx
cscx = − cscx cotx =⇒

∫
cscx cotxdx = − cscx

d

dx
cosx = − sinx =⇒

∫
sinxdx = − cosx

d

dx
secx = secx tanx =⇒

∫
secx tanxdx = secx

d

dx
tanx = sec2 x =⇒

∫
sec2 xdx = tanx

d

dx
cotx = − csc2 x =⇒

∫
csc2 xdx = − cotx

d

dx
arcsinx =

1√
1− x2

=⇒
∫

1√
1− x2

dx = arcsinx
d

dx
arctanx =

1

x2 + 1
=⇒

∫
1

x2 + 1
dx = arctanx

Almost every integral we consider for the remainder of the course will rely on these basic antiderivatives
in some form. The focus in this lesson is to consider integrals of the form:∫

f(g(x))g′(x)dx

Our motive for looking at this specific type of integrals is that if we let u = g(x) than du/dx = g′(x) which
implies du = g′(x)dx. Using this substitution, we can reduce the integral of a composition of functions to
simply ∫

f(u)du

and find a simple antiderivative. The big idea is that if we see the derivative of some part of the function in
the integral, or a composition of functions, we should try using u-substituition.

Example 1 - Straight substitution ∫
3 sec2(3x− 4)dx

We notice that the function 3x− 4 is composed inside the function sec2 x, and its derivative, 3, appears
in the integrand. Therefore, we can let u = 3x− 4 and du = 3dx which means∫

3 sec2(3x− 4)dx =

∫
sec2 udu = tanu + C = tan(3x− 4) + C
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However, since constants can multiply through an integral, we don’t need to see the exact derivative
present, just some mutiple of it.

Example 2 - Straight substitution ∫
x2

x3 + 1
dx

Notice that the derivative of x3 + 1 is 3x2 and x2dx appears in the integral. We could either multiply
the integral by 3

3 to get 3x2 or we could use algebra to see that if u = x3 + 1 then du = 3x2dx which implies
x2dx = 1

3du. Therefore∫
x2

x3 + 1
dx =

∫ 1
3du

u
=

1

3

∫
du

u
=

1

3
lnu + C =

1

3
ln(x3 + 1) + C

Be aware that when we make our choice of u, we need to make everything in terms of u.

Example 3 - Multiple substitutions ∫
x3
√
x2 + 1dx

There are 3 possible choices we might consider for u. We may think that u = x3 would be good since x2

appears, but this will not work well since it is inside another function. We could let u =
√
x2 + 1, in that

case u2 = x2 + 1 and so 2udu = 2xdx or equivalently udu = xdx. Here we can evaluate the integral since we
can determine x2 in terms of u.∫

x3
√
x2 + 1dx =

∫
x2
√

x2 + 1xdx

=

∫
(u2 − 1)(u)udu

=

∫
(u4 − u2)du

=
u5

5
− u3

3
+ C

=
1

5
(x2 + 1)5/2 − 1

3
(x2 + 1)3/2 + C

Otherwise, we might have let u = x2 + 1 as it looks to be inside another function. In this case du = 2xdx
and again we are good to continue since we will have an x2 left over that we can put in terms of u.∫

x3
√
x2 + 1dx =

∫
x2
√

x2 + 1xdx

=

∫
(u− 1)

√
u
du

2

=
1

2

∫
(u3/2 − u1/2)du

=
1

2

(
2

5
u5/2 − 2

3
u3/2

)
+ C

=
1

5
(x2 + 1)5/2 − 1

3
(x2 + 1)3/2 + C

As is true in many areas of mathematics, there is no ‘one way’ to use u-substitution correctly. If you see
something, try it and see what happens. A lot of the time it will work out and even if it doesn’t you will
learn from why it didn’t.
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Example 4 - Building a familiar function∫
1√

4− x2
dx

On the surface, there doesn’t seem to be a good choice of u. If we let u = 4 − x2 or
√

4− x2 then we
don’t have xdx needed for du, and if we let u = x nothing is changed. However, we can see this looks a bit

like
1√

1− x2
which is the derivative of arcsin(x). Thus, we are motivated to let x = 2u and dx = 2du.

∫
1√

4− x2
dx =

∫
2√

4− 4u2
du

=

∫
2

2
√

1− u2
du

= arcsin(u) + C

= arcsin
(x

2

)
+ C

Example 5 - Simplifying or changing the integrand∫
sin2 xdx

Again, there is no good choice of u so we need to change the integrand to something else. Using a trig
identity, we know sin2 x = 1−cos 2x

2 so,∫
sin2 xdx =

∫
1− cos 2x

2
dx

=

∫
1

2
dx−

∫
cos 2x

2
dx

=
x

2
− sin 2x

4
+ C

Example 6 - Discrete integral ∫ e

1

ln(x2)

x
dx

We proceed as normal but remember we are integrating along x (hence the dx), so when we make our
substitution the interval will change too. To begin, we see that the derivative of lnx is present, but in order
to let u = lnx, we must first simplify lnx2 = 2 lnx. Then we get that du = dx/x and rather than integrating
on the interval x ∈ [1, e], we are instead integrating along the interval u ∈ [0, 1] since ln 1 = 0 and ln e = 1.∫ e

1

ln(x2)

x
dx =

∫ 1

0

2udu

= u2
∣∣∣1
0

OR ln2 x
∣∣∣e
1

= 1

Notice if we substituted back in terms of x, we would not have to change the interval. Both answers are
the same since we are consitent when we integrate with respect to u and when we integrate with respect to
x.
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