1.

Name

x	3	7
h(x)	7	22
h'(x)	5	10

Selected values of the increasing function h and its derivative h' are shown in the table above. If g is a differentiable function such that h(g(x)) = x for all x, what is the value of g'(7)?

The figure above shows the graphs of the functions f and g. The graphs of the lines tangent to the graph of g at x = -3 and x = 1 are also shown. If B(x) = g(f(x)), what is B'(-3)?

The graphs of two differentiable functions f and g are shown above. Given p(x) = f(x)g(x) which of the following statements about p'(-2) is true?

(A) p'(-2) < 0(B) p'(-2) = 0(C) p'(-2) > 0

D p'(-2) is undefined.

(E) There is not enough information given to conclude anything about p'(-2).

4. If $y = \arctan(e^{2x})$, then $\frac{dy}{dx} =$ (A) $\frac{2e^{2x}}{\sqrt{1-e^{4x}}}$ (B) $\frac{2e^{2x}}{1+e^{4x}}$

$$\bigcirc \frac{e^{2x}}{1+e^{4x}}$$

$$\bigcirc \quad \frac{1}{\sqrt{1-e^{4x}}}$$

$$(E) \frac{1}{1+e^{4x}}$$

5. If g is the function given by $g(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 - 70x + 5$, on which of the following intervals is g decreasing?

A (-∞, -10) and (7, ∞)
B (-∞, -7) and (10, ∞)
C (-∞, 10)
D (-10, 7)

(E)
$$(-7, 10)$$

- 6. Et f be the function given by $f(x) = \cos(2x) + \ln(3x)$. What is the least value of x at which the graph of f changes concavity?
- **A**) 0.56
- **B** 0.93
- **C** 1.18
- **D** 2.38
- **E** 2.44
- 7. If $f(x) = \frac{5-x}{x^3+2}$, then f'(x) =

8. Et $f(x) = \int_0^{x^2} \sin t \, dt$. At how many points in the closed interval $[0, \sqrt{\pi}]$ does the instantaneous rate of change of f equal the average rate of change of f on that interval?

9.					
	x	f(x)	f'(x)	g(x)	g'(x)
	0	3	4	2	π

The table above gives values of the differentiable functions f and g and their derivatives at x = 0. If $h(x) = \frac{f(x)}{g(x)}$, what is the value of h'(0)?

11. An equation of the line tangent to the graph of $f(x) = x(1-2x)^3$ at the point (1,-1) is

(A) y = -7x + 6(B) y = -6x + 5(C) y = -2x(D) y = 2x - 3(E) y = 7x - 812. If $f(x) = \ln x$, then $\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$ is (A) $\frac{1}{3}$ (B) e^{3} (C) $\ln 3$

D nonexistent

13. If $\ln(2x + y) = x + 1$, then $\frac{dy}{dx} =$

- (A) -2 (B) 2x + y - 2(C) 2x + y(D) 4x + 2y - 2(E) $y - \frac{y}{x}$
- 14. Suppose that *f* is an odd function; i.e., f(-x) = -f(x) for all *x*. Suppose that $f'(x_0)$ exists. Which of the following must necessarily be equal to $f'(-x_0)$?
- $\bigcirc \quad \mathbf{B} \quad -f'(x_0)$
- $\bigcirc \frac{1}{f'(x_0)}$
- $\bigcirc \quad -\frac{1}{f'(x_0)}$
- **E** None of the above
- 15. If $y = x^2 e^x$, then $\frac{dy}{dx} =$

16. If $x^2 + xy - 3y = 3$, then at the point (2, 1), $\frac{dy}{dx} =$ (A) 5 (B) 4 (C) $\frac{7}{3}$ (D) 2

17. If $f(x) = x^2 + 2x$, then $\frac{d}{dx}(f(\ln x)) =$

 $2 \ln x + 2$ Α x $2x\ln x + 2x$ B) $2\ln x + 2$ c) D $2\ln x + \frac{2}{x}$ $\frac{2x+2}{x}$ (е) 18. If $f(x) = (x-1)^2 \sin x$, then f'(0) =(A) -2(в) -1 **c)** 0 **D)** 1 **E**) 2

19. If f is a differentiable function and $y = \sin(f(x^2))$ what is $\frac{dy}{dx}$ when x = 3?

B 6cos (f(9))

c)

- 20. Let f be the function defined by $f(x) = 2x + e^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0,1) is on the graph of f, what is the value of g'(1)?
- $(A) \frac{1}{2+e}$
- $\bigcirc \frac{1}{3}$
- $\bigcirc \frac{1}{2}$
- **D** 3
- (E) 2+e
- 21. Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

(A) $\frac{1}{13}$ (B) $\frac{1}{4}$ (C) $\frac{7}{4}$ (D) 4

E) 13

- 22. Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?
- $(A) -\frac{1}{2}$
- $\bigcirc -\frac{1}{8}$
- $\bigcirc \frac{1}{6}$
- $\bigcirc \frac{1}{3}$

(E) The value of g'(3) cannot be determined from the information given.

23. $\frac{d}{dx}(\tan^{-1}x+2\sqrt{x})=$

(A) $-\frac{1}{\sin^2 x} + \frac{1}{\sqrt{x}}$ (B) $\frac{1}{\sqrt{1-x^2}} - 4\sqrt[3]{x}$ (C) $\frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}}$ (D) $\frac{1}{1+x^2} - 4\sqrt[3]{x}$ (E) $\frac{1}{1+x^2} + \frac{1}{\sqrt{x}}$

25. The function h is given by $h(x) = x^5 + 3x - 2$ and h(1) = 2. If h^{-1} is the inverse of h, what is the value of $(h^{-1})'(2)$?

- 26. What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$?
- **A** 2
- $\bigcirc \frac{1}{2}$
- **C** 0
- \bigcirc $-\frac{1}{2}$
- (E) −2
- 27. If $\lim_{h\to 0} \frac{\arcsin(a+h) \arcsin(a)}{h} = 2$, which of the following could be the value of *a*?

- **E** 2
- 28. An equation for a tangent to the graph of at the origin is
- (A)
- (B)
- (c)
- (D)
- (E)

29. If
$$\frac{dy}{dx} = x^4 - 2x^3 + 3x - 1$$
, then $\frac{d^3y}{dx^3}$ evaluated at x=2 is

- **30.** If $x^2+y^2=25$, what is the value of $\frac{d^2y}{dx^2}$ at the point (4,3)?
- $(A) \frac{25}{27}$
- $\bigcirc B -\frac{7}{27}$
- $\bigcirc \frac{7}{27}$
- $\bigcirc \frac{3}{4}$
- $E \frac{25}{27}$