1.

x	3	7
$h(x)$	7	22
$h^{\prime}(x)$	5	10

Selected values of the increasing function h and its derivative h ' are shown in the table above. If g is a differentiable function such that $h(g(x))=x$ for all x, what is the value of $g^{\prime}(7)$?
(A) $-1 / 10$
(B) $1 / 10$
(C) $1 / 5$
(D) $7 / 5$
2.

The figure above shows the graphs of the functions f and g. The graphs of the lines tangent to the graph of g at $x=-3$ and $x=1$ are also shown. If $B(x)=g(f(x))$, what is $B^{\prime}(-3)$?

Week 4 Derivative Rules Review

(A) $-\frac{1}{2}$
(B) $-\frac{1}{6}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) $\frac{1}{2}$
3.

The graphs of two differentiable functions f and g are shown above. Given $p(x)=f(x) g(x)$ which of the following statements about $p^{\prime}(-2)$ is true?

Week 4 Derivative Rules Review

(A) $p^{\prime}(-2)<0$
(B) $p^{\prime}(-2)=0$
(C) $p^{\prime}(-2)>0$
(D) $p^{\prime}(-2)$ is undefined.
(E) There is not enough information given to conclude anything about $p^{\prime}(-2)$.
4. If $y=\arctan \left(e^{2 x}\right)$, then $\frac{d y}{d x}=$
(A) $\frac{2 e^{2 x}}{\sqrt{1-e^{4 x}}}$
(B) $\frac{2 e^{2 x}}{1+e^{4 x}}$
(C) $\frac{e^{2 x}}{1+e^{4 x}}$
(D) $\frac{1}{\sqrt{1-e^{4 x}}}$
(E) $\frac{1}{1+e^{4 x}}$
5. If g is the function given by $g(x)=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}-70 x+5$, on which of the following intervals is g decreasing?

Week 4 Derivative Rules Review

(A) $(-\infty,-10)$ and $(7, \infty)$
(B) $(-\infty,-7)$ and $(10, \infty)$

C $(-\infty, 10)$
(D) $(-10,7)$
(E) $(-7,10)$
6. 囲 Let f be the function given by $f(x)=\cos (2 x)+\ln (3 x)$. What is the least value of x at which the graph of f changes concavity?
(A) 0.56
(B) 0.93
(C) 1.18
(D) 2.38
(E) 2.44
7. If $f(x)=\frac{5-x}{x^{3}+2}$, then $f^{\prime}(x)=$

Week 4 Derivative Rules Review

(A) $\frac{-4 x^{3}+15 x^{2}-2}{\left(x^{3}+2\right)^{2}}$
(B) $\frac{-2 x^{3}+15 x^{2}+2}{\left(x^{3}+2\right)^{2}}$
(C) $\frac{2 x^{3}-15 x^{2}-2}{\left(x^{3}+2\right)^{2}}$
(D) $\frac{4 x^{3}-15 x^{2}+2}{\left(x^{3}+2\right)^{2}}$
8. 囲 Let $f(x)=\int_{0}^{x^{2}} \sin t d t$. At how many points in the closed interval $[0, \sqrt{\pi}]$ does the instantaneous rate of change of f equal the average rate of change of f on that interval?
(A) Zero
(B) One
(C) Two
(D) Three
(E) Four
9.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
0	3	4	2	π

The table above gives values of the differentiable functions f and g and their derivatives at $x=0$. If $h(x)=\frac{f(x)}{g(x)}$, what is the value of $h^{\prime}(0)$?

Week 4 Derivative Rules Review

(A) $\frac{8-3 \pi}{4}$
(B) $\frac{3 \pi-8}{4}$
(C) $\frac{4}{\pi}$
(D) $\frac{2-3 \pi}{2}$
(E) $\frac{8+3 \pi}{4}$
10. If $y=\tan x-\cot x$, then $d y / d x=$
(A) $\sec x \csc x$
(B) $\sec x-\csc x$
(C) $\sec x+\csc x$
(D) $\sec ^{2} x-\csc ^{2} x$
(E) $\sec ^{2} x+\csc ^{2} x$
11. An equation of the line tangent to the graph of $f(x)=x(1-2 x)^{3}$ at the point $(1,-1)$ is

Week 4 Derivative Rules Review

(A) $y=-7 x+6$
(B) $y=-6 x+5$
(C) $y=-2 x$
(D) $y=2 x-3$
(E) $y=7 x-8$
12. If $f(x)=\ln x$, then $\lim _{x \rightarrow 3} \frac{f(x)-f(3)}{x-3}$ is
(A) $\frac{1}{3}$
(B) e^{3}
(C) $\ln 3$
(D) nonexistent
13. If $\ln (2 x+y)=x+1$, then $\frac{d y}{d x}=$

Week 4 Derivative Rules Review

(A) -2
(B) $2 x+y-2$
(C) $2 x+y$
(D) $4 x+2 y-2$
(E) $y-\frac{y}{x}$
14. Suppose that f is an odd function; i.e., $f(-x)=-f(x)$ for all x. Suppose that $f^{\prime}\left(x_{0}\right)$ exists. Which of the following must necessarily be equal to $f^{\prime}\left(-x_{0}\right)$?
(A) $f^{\prime}\left(x_{0}\right)$
(B) $-f^{\prime}\left(x_{0}\right)$
(C) $\frac{1}{f^{\prime}\left(x_{0}\right)}$
(D) $-\frac{1}{f^{\prime}\left(x_{0}\right)}$
(E) None of the above
15. If $y=x^{2} e^{x}$, then $\frac{d y}{d x}=$

Week 4 Derivative Rules Review

(A) $2 x e^{x}$
(B) $x\left(x+2 e^{x}\right)$
(C) $x e^{x}(x+2)$
(D) $2 x+e^{x}$
(E) $2 x+e$
16. If $x^{2}+x y-3 y=3$, then at the point $(2,1), \frac{d y}{d x}=$
(A) 5
(B) 4
(C) $\frac{7}{3}$
(D) 2
17. If $f(x)=x^{2}+2 x$, then $\frac{d}{d x}(f(\ln x))=$

Week 4 Derivative Rules Review

(A) $\frac{2 \ln x+2}{x}$
(B) $2 x \ln x+2 x$
(C) $2 \ln x+2$
(D) $2 \ln x+\frac{2}{x}$
(E) $\frac{2 x+2}{x}$
18. If $f(x)=(x-1)^{2} \sin x$, then $f^{\prime}(0)=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
19. If f is a differentiable function and $y=\sin \left(f\left(x^{2}\right)\right)$ what is $\frac{d y}{d x}$ when $x=3$?

Week 4 Derivative Rules Review

(A) $\cos \left(f^{\prime}(9)\right)$
(B) $6 \cos (f(9))$
(C)
(D) $\backslash\left(6 f^{\prime} \backslash \operatorname{left}(9 \backslash\right.$ right $) \backslash \cos \backslash \operatorname{left}(\mathrm{flleft}(9 \backslash$ right $) \backslash$ right $\left.) \backslash\right)$
20. Let f be the function defined by $f(x)=2 x+e^{x}$. If $g(x)=f^{-1}(x)$ for all x and the point $(0,1)$ is on the graph of f, what is the value of $g^{\prime}(1)$?
(A) $\frac{1}{2+e}$
(B) $\frac{1}{3}$
(C) $\frac{1}{2}$
(D) 3
(E) $2+e$
21. Let f be the function defined by $f(x)=x^{3}+x$. If $g(x)=f^{-1}(x)$ and $g(2)=1$, what is the value of $g^{\prime}(2)$?

Week 4 Derivative Rules Review

(A) $\frac{1}{13}$
(B) $\frac{1}{4}$
(C) $\frac{7}{4}$
(D) 4
(E) 13
22. Let f be a differentiable function such that $f(3)=15, f(6)=3, f^{\prime}(3)=-8$, and $f^{\prime}(6)=-2$. The function g is differentiable and $g(x)=f^{-1}(x)$ for all x. What is the value of $g^{\prime}(3)$?
(A) $-\frac{1}{2}$
(B) $-\frac{1}{8}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
(E) The value of $g^{\prime}(3)$ cannot be determined from the information given.
23. $\frac{d}{d x}\left(\tan ^{-1} x+2 \sqrt{x}\right)=$

Week 4 Derivative Rules Review

(A) $-\frac{1}{\sin ^{2} x}+\frac{1}{\sqrt{x}}$
(B) $\frac{1}{\sqrt{1-x^{2}}}-4 \sqrt[3]{x}$
(C) $\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{x}}$
(D) $\frac{1}{1+x^{2}}-4 \sqrt[3]{x}$
(E) $\frac{1}{1+x^{2}}+\frac{1}{\sqrt{x}}$
24. If $\arcsin x=\ln y$, then $\frac{d y}{d x}=$
(A) $\frac{y}{\sqrt{1-x^{2}}}$
(B) $\frac{x y}{\sqrt{1-x^{2}}}$
(C) $\frac{y}{1+x^{2}}$
(D) $e^{\arcsin x}$
(E) $\frac{e^{\arcsin x}}{1+x^{2}}$
25. The function h is given by $h(x)=x^{5}+3 x-2$ and $h(1)=2$. If h^{-1} is the inverse of h, what is the value of $\left(h^{-1}\right)^{\prime}(2)$?

Week 4 Derivative Rules Review

(A) $\frac{1}{83}$
(B) $\frac{1}{8}$
(C) $\frac{1}{2}$
(D) 1
(E) 8
26. What is the slope of the line tangent to the curve $y=\arctan (4 x)$ at the point at which $x=\frac{1}{4}$?
(A) 2
(B) $\frac{1}{2}$
(C) 0
(D) $-\frac{1}{2}$
(E) -2
27. If $\lim _{h \rightarrow 0} \frac{\arcsin (a+h)-\arcsin (a)}{h}=2$, which of the following could be the value of a ?

Week 4 Derivative Rules Review

(A) $\frac{\sqrt{2}}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\sqrt{3}$
(D) $\frac{1}{2}$
(E) 2
28. An foquation tangent tor the graph of $<$ img src="/tmp/formula_5ff5f490a12474.64953947_1609954448.svg" style="vertical-align:middle"> at the origin is
(A)
(B)
(C)
(D)
(E)
29. If $\frac{d y}{d x}=x^{4}-2 x^{3}+3 x-1$, then $\frac{d^{3} y}{d x^{3}}$ evaluated at $\mathrm{x}=2$ is

Week 4 Derivative Rules Review

(A) 11
(B) 24
(C) 26
(D) 125
30. If $x^{2}+y^{2}=25$, what is the value of $\frac{d^{2} y}{d x^{2}}$ at the point $(4,3)$?
(A) $-\frac{25}{27}$
(B) $-\frac{7}{27}$
(C) $\frac{7}{27}$
(D) $\frac{3}{4}$
(E) $\frac{25}{27}$

