1.

x	3	7
h(x)	7	22
h'(x)	5	10

Selected values of the increasing function h and its derivative h' are shown in the table above. If g is a differentiable function such that h(g(x)) = x for all x, what is the value of g'(7)?

2.

The figure above shows the graphs of the functions f and g. The graphs of the lines tangent to the graph of g at x = -3 and x = 1 are also shown. If B(x) = g(f(x)), what is B'(-3)?

The graphs of two differentiable functions f and g are shown above. Given p(x) = f(x)g(x) which of the following statements about p'(-2) is true?

(A)
$$p'(-2) < 0$$

(B) $p'(-2) = 0$
(C) $p'(-2) > 0$
(D) $p'(-2)$ is undefined.
(E) There is not enough information given to conclude anything about $p'(-2)$.
4. If $y = \arctan(e^{2x})$, then $\frac{dy}{dx} =$
(A) $\frac{2e^{2x}}{\sqrt{1-e^{4x}}}$
(B) $\frac{\frac{2e^{2x}}{1+e^{4x}}}{1+e^{4x}}$

5. If g is the function given by $g(x) = \frac{1}{3}x^3 + \frac{3}{2}x^2 - 70x + 5$, on which of the following intervals is g decreasing?

(A) $(-\infty, -10)$ and $(7, \infty)$ (B) $(-\infty, -7)$ and $(10, \infty)$ (C) $(-\infty, 10)$

- (D) (-10,7)
- (E) (-7, 10)
- 6. Et f be the function given by $f(x) = \cos(2x) + \ln(3x)$. What is the least value of x at which the graph of f changes concavity?

B 0.93	~
C 1.18	
D 2.38	
E 2.44	

7. If
$$f(x) = \frac{5-x}{x^3+2}$$
, then $f'(x) =$

(E) Four

[x	f(x)	f'(x)	g(x)	g'(x)	
	0	3	4	2	π	

The table above gives values of the differentiable functions f and g and their derivatives at x = 0. If $h(x) = \frac{f(x)}{g(x)}$, what is the value of h'(0)?

11. An equation of the line tangent to the graph of $f(x) = x(1-2x)^3$ at the point (1,-1) is

(A)
$$y = -7x + 6$$

(B) $y = -6x + 5$
(C) $y = -2x$
(D) $y = 2x - 3$
(E) $y = 7x - 8$
12. If $f(x) = \ln x$, then $\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3}$ is
(A) $\frac{1}{3}$
(B) e^{3}

 \bigcirc ln 3

D nonexistent

13. If $\ln (2x + y) = x + 1$, then $\frac{dy}{dx} =$

14. Suppose that *f* is an odd function; i.e., f(-x) = -f(x) for all *x*. Suppose that $f'(x_0)$ exists. Which of the following must necessarily be equal to $f'(-x_0)$?

E None of the above

15. If $y = x^2 e^x$, then $\frac{dy}{dx} =$

17. If $f(x) = x^2 + 2x$, then $\frac{d}{dx}(f(\ln x)) =$

19. If f is a differentiable function and $y = \sin(f(x^2))$ what is $\frac{dy}{dx}$ when x = 3?

(B) 6cos (f(9))

c

 $(b) \ (6f'(9)(0))(cos(left(9)(0))))$

20. Let f be the function defined by $f(x) = 2x + e^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0,1) is on the graph of f, what is the value of g'(1)?

$ (A) \frac{1}{2+e} $	
$ (B) \frac{1}{3} $	~
D 3	
(E) $2+e$	

21. Let f be the function defined by $f(x) = x^3 + x$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

$ A \frac{1}{13} $	
$\bigcirc B \frac{1}{4}$	~
$\bigcirc \frac{7}{4}$	
D 4	
E 13	

22. Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?

$(A) - \frac{1}{2}$	~
(B) $-\frac{1}{8}$	
$\bigcirc \frac{1}{6}$	
$\bigcirc \frac{1}{3}$	
(E) The value of $g'(3)$ cannot be determined from the information given.	

23. $\frac{d}{dx}(\tan^{-1}x+2\sqrt{x})=$

 $(A) -\frac{1}{\sin^2 x} + \frac{1}{\sqrt{x}}$ $(B) \frac{1}{\sqrt{1-x^2}} - 4\sqrt[3]{x}$ $(C) \frac{1}{\sqrt{1-x^2}} + \frac{1}{\sqrt{x}}$ $(D) \frac{1}{1+x^2} - 4\sqrt[3]{x}$

24. If $\arcsin x = \ln y$, then $\frac{dy}{dx} =$

25. The function h is given by $h(x) = x^5 + 3x - 2$ and h(1) = 2. If h^{-1} is the inverse of h, what is the value of $(h^{-1})'(2)$?

$ (A) \frac{1}{83} $	
$ (B) \frac{1}{8} $	~
$\bigcirc \frac{1}{2}$	
D 1	
(E) 8	

	 4	
A 2		~
$(B) \frac{1}{2}$		
\bigcirc $-\frac{1}{2}$		
(E) −2		

26. What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$?

$ (A) \frac{\sqrt{2}}{2} $			
$\bigcirc B \frac{\sqrt{3}}{2}$			~
C √3			
$\bigcirc \frac{1}{2}$			
E 2			

- 28. An equation for a tangent to the graph of at the origin is
- (A)
- (B)
- (c)
- D
- (E)

29. If
$$\frac{dy}{dx} = x^4 - 2x^3 + 3x - 1$$
, then $\frac{d^3y}{dx^3}$ evaluated at x=2 is

A 11	
B 24	~
© 26	
D 125	

30. If $x^2+y^2=25$, what is the value of $\frac{d^2y}{dx^2}$ at the point (4,3)?

$(A) - \frac{25}{27}$	~
$(B) - \frac{7}{27}$	
$\bigcirc \frac{7}{27}$	
$\bigcirc \frac{3}{4}$	
(E) $\frac{25}{27}$	